A Hardware-Efficient Elliptic Curve Cryptographic Architecture over GF (p)

This paper proposes a hardware-efficient elliptic curve cryptography (ECC) architecture over GF(p), which uses adders to achieve scalar multiplication (SM) through hardware-reuse method. In terms of algorithm, the improvement of the interleaved modular multiplication (IMM) algorithm and the binary m...

Full description

Bibliographic Details
Main Authors: Chao Cui, Yun Zhao, Yong Xiao, Weibin Lin, Di Xu
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2021/8883614
Description
Summary:This paper proposes a hardware-efficient elliptic curve cryptography (ECC) architecture over GF(p), which uses adders to achieve scalar multiplication (SM) through hardware-reuse method. In terms of algorithm, the improvement of the interleaved modular multiplication (IMM) algorithm and the binary modular inverse (BMI) algorithm needs two adders. In addition to the adder, the data register is another optimize target. The design compiler is synthesized on 0.13 µm CMOS ASIC platform. The time range of performing scalar multiplication over 160, 192, 224, and 256 field orders under 150 MHz frequency is 1.99–3.17 ms. Moreover, the gate area required for different field orders in this design is in the range of 35.65k–59.14k, with 50%–91% hardware resource less than other processors.
ISSN:1563-5147