On the Distance Pattern Distinguishing Number of a Graph
Let G=(V,E) be a connected simple graph and let M be a nonempty subset of V. The M-distance pattern of a vertex u in G is the set of all distances from u to the vertices in M. If the distance patterns of all vertices in V are distinct, then the set M is a distance pattern distinguishing set of G. A...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2014-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2014/328703 |
Summary: | Let G=(V,E) be a connected simple graph and let M be a nonempty subset of V. The M-distance pattern of a vertex u in G is the set of all distances from u to the vertices in M. If the distance patterns of all vertices in V are distinct, then the set M is a distance pattern distinguishing set of G. A graph G with a distance pattern distinguishing set is called a distance pattern distinguishing graph. Minimum number of vertices in a distance pattern distinguishing set is called distance pattern distinguishing number of a graph. This paper initiates a study on the problem of finding distance pattern distinguishing number of a graph and gives bounds for distance pattern distinguishing number. Further, this paper provides an algorithm to determine whether a graph is a distance pattern distinguishing graph or not and hence to determine the distance pattern distinguishing number of that graph. |
---|---|
ISSN: | 1110-757X 1687-0042 |