Fixed Point Sets of <i>k</i>-Continuous Self-Maps of <i>m</i>-Iterated Digital Wedges
Let <inline-formula><math display="inline"><semantics><msubsup><mi>C</mi><mi>k</mi><mrow><mi>n</mi><mo>,</mo><mi>l</mi></mrow></msubsup></semantics></math></inline-formula&g...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-09-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/9/1617 |
id |
doaj-7970ef4a081e4817bd35a452e7746c56 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sang-Eon Han |
spellingShingle |
Sang-Eon Han Fixed Point Sets of <i>k</i>-Continuous Self-Maps of <i>m</i>-Iterated Digital Wedges Mathematics digital wedge alignment perfect k-contractibility digital k-curve fixed point set |
author_facet |
Sang-Eon Han |
author_sort |
Sang-Eon Han |
title |
Fixed Point Sets of <i>k</i>-Continuous Self-Maps of <i>m</i>-Iterated Digital Wedges |
title_short |
Fixed Point Sets of <i>k</i>-Continuous Self-Maps of <i>m</i>-Iterated Digital Wedges |
title_full |
Fixed Point Sets of <i>k</i>-Continuous Self-Maps of <i>m</i>-Iterated Digital Wedges |
title_fullStr |
Fixed Point Sets of <i>k</i>-Continuous Self-Maps of <i>m</i>-Iterated Digital Wedges |
title_full_unstemmed |
Fixed Point Sets of <i>k</i>-Continuous Self-Maps of <i>m</i>-Iterated Digital Wedges |
title_sort |
fixed point sets of <i>k</i>-continuous self-maps of <i>m</i>-iterated digital wedges |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2020-09-01 |
description |
Let <inline-formula><math display="inline"><semantics><msubsup><mi>C</mi><mi>k</mi><mrow><mi>n</mi><mo>,</mo><mi>l</mi></mrow></msubsup></semantics></math></inline-formula> be a simple closed <i>k</i>-curves with <i>l</i> elements in <inline-formula><math display="inline"><semantics><msup><mrow><mi mathvariant="double-struck">Z</mi></mrow><mi>n</mi></msup></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><mi>W</mi><mo>:</mo><mo>=</mo><msup><mover accent="true"><mrow><msubsup><mi>C</mi><mi>k</mi><mrow><mi>n</mi><mo>,</mo><mi>l</mi></mrow></msubsup><mo>∨</mo><mo>⋯</mo><mo>∨</mo><msubsup><mi>C</mi><mi>k</mi><mrow><mi>n</mi><mo>,</mo><mi>l</mi></mrow></msubsup></mrow><mo>︷</mo></mover><mrow><mi mathvariant="normal">m</mi><mo>-</mo><mi>times</mi></mrow></msup></mrow></semantics></math></inline-formula> be an <i>m</i>-iterated digital wedges of <inline-formula><math display="inline"><semantics><msubsup><mi>C</mi><mi>k</mi><mrow><mi>n</mi><mo>,</mo><mi>l</mi></mrow></msubsup></semantics></math></inline-formula>, and <inline-formula><math display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>C</mi><mi>o</mi><msub><mi>n</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>W</mi><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula> be an alignment of fixed point sets of <i>W</i>. Then, the aim of the paper is devoted to investigating various properties of <inline-formula><math display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>C</mi><mi>o</mi><msub><mi>n</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>W</mi><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula>. Furthermore, when proceeding with this work, this paper addresses several unsolved problems. To be specific, we firstly formulate an alignment of fixed point sets of <inline-formula><math display="inline"><semantics><msubsup><mi>C</mi><mi>k</mi><mrow><mi>n</mi><mo>,</mo><mi>l</mi></mrow></msubsup></semantics></math></inline-formula>, denoted by <inline-formula><math display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>C</mi><mi>o</mi><msub><mi>n</mi><mi>k</mi></msub><mrow><mo>(</mo><msubsup><mi>C</mi><mi>k</mi><mrow><mi>n</mi><mo>,</mo><mi>l</mi></mrow></msubsup><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math display="inline"><semantics><mrow><mi>l</mi><mo>(</mo><mo>≥</mo><mn>7</mn><mo>)</mo></mrow></semantics></math></inline-formula> is an odd natural number and <inline-formula><math display="inline"><semantics><mrow><mi>k</mi><mo>≠</mo><mn>2</mn><mi>n</mi></mrow></semantics></math></inline-formula>. Secondly, given a digital image <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula> with <inline-formula><math display="inline"><semantics><mrow><msup><mi>X</mi><mo>♯</mo></msup><mo>=</mo><mi>n</mi></mrow></semantics></math></inline-formula>, we find a certain condition that supports <inline-formula><math display="inline"><semantics><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>∈</mo><mi>F</mi><mo>(</mo><mi>C</mi><mi>o</mi><msub><mi>n</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula>. Thirdly, after finding some features of <inline-formula><math display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>C</mi><mi>o</mi><msub><mi>n</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>W</mi><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula>, we develop a method of making <inline-formula><math display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>C</mi><mi>o</mi><msub><mi>n</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>W</mi><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula> perfect according to the (even or odd) number <i>l</i> of <inline-formula><math display="inline"><semantics><msubsup><mi>C</mi><mi>k</mi><mrow><mi>n</mi><mo>,</mo><mi>l</mi></mrow></msubsup></semantics></math></inline-formula>. Finally, we prove that the perfectness of <inline-formula><math display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>C</mi><mi>o</mi><msub><mi>n</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>W</mi><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula> is equivalent to that of <inline-formula><math display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>C</mi><mi>o</mi><msub><mi>n</mi><mi>k</mi></msub><mrow><mo>(</mo><msubsup><mi>C</mi><mi>k</mi><mrow><mi>n</mi><mo>,</mo><mi>l</mi></mrow></msubsup><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula>. This can play an important role in studying fixed point theory and digital curve theory. This paper only deals with <i>k</i>-connected digital images <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula> such that <inline-formula><math display="inline"><semantics><mrow><msup><mi>X</mi><mo>♯</mo></msup><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>. |
topic |
digital wedge alignment perfect k-contractibility digital k-curve fixed point set |
url |
https://www.mdpi.com/2227-7390/8/9/1617 |
work_keys_str_mv |
AT sangeonhan fixedpointsetsofikicontinuousselfmapsofimiiterateddigitalwedges |
_version_ |
1724991408361701376 |
spelling |
doaj-7970ef4a081e4817bd35a452e7746c562020-11-25T01:53:21ZengMDPI AGMathematics2227-73902020-09-0181617161710.3390/math8091617Fixed Point Sets of <i>k</i>-Continuous Self-Maps of <i>m</i>-Iterated Digital WedgesSang-Eon Han0Department of Mathematics Education, Institute of Pure and Applied Mathematics, Jeonbuk National University, Jeonju-City Jeonbuk 54896, KoreaLet <inline-formula><math display="inline"><semantics><msubsup><mi>C</mi><mi>k</mi><mrow><mi>n</mi><mo>,</mo><mi>l</mi></mrow></msubsup></semantics></math></inline-formula> be a simple closed <i>k</i>-curves with <i>l</i> elements in <inline-formula><math display="inline"><semantics><msup><mrow><mi mathvariant="double-struck">Z</mi></mrow><mi>n</mi></msup></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><mi>W</mi><mo>:</mo><mo>=</mo><msup><mover accent="true"><mrow><msubsup><mi>C</mi><mi>k</mi><mrow><mi>n</mi><mo>,</mo><mi>l</mi></mrow></msubsup><mo>∨</mo><mo>⋯</mo><mo>∨</mo><msubsup><mi>C</mi><mi>k</mi><mrow><mi>n</mi><mo>,</mo><mi>l</mi></mrow></msubsup></mrow><mo>︷</mo></mover><mrow><mi mathvariant="normal">m</mi><mo>-</mo><mi>times</mi></mrow></msup></mrow></semantics></math></inline-formula> be an <i>m</i>-iterated digital wedges of <inline-formula><math display="inline"><semantics><msubsup><mi>C</mi><mi>k</mi><mrow><mi>n</mi><mo>,</mo><mi>l</mi></mrow></msubsup></semantics></math></inline-formula>, and <inline-formula><math display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>C</mi><mi>o</mi><msub><mi>n</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>W</mi><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula> be an alignment of fixed point sets of <i>W</i>. Then, the aim of the paper is devoted to investigating various properties of <inline-formula><math display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>C</mi><mi>o</mi><msub><mi>n</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>W</mi><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula>. Furthermore, when proceeding with this work, this paper addresses several unsolved problems. To be specific, we firstly formulate an alignment of fixed point sets of <inline-formula><math display="inline"><semantics><msubsup><mi>C</mi><mi>k</mi><mrow><mi>n</mi><mo>,</mo><mi>l</mi></mrow></msubsup></semantics></math></inline-formula>, denoted by <inline-formula><math display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>C</mi><mi>o</mi><msub><mi>n</mi><mi>k</mi></msub><mrow><mo>(</mo><msubsup><mi>C</mi><mi>k</mi><mrow><mi>n</mi><mo>,</mo><mi>l</mi></mrow></msubsup><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math display="inline"><semantics><mrow><mi>l</mi><mo>(</mo><mo>≥</mo><mn>7</mn><mo>)</mo></mrow></semantics></math></inline-formula> is an odd natural number and <inline-formula><math display="inline"><semantics><mrow><mi>k</mi><mo>≠</mo><mn>2</mn><mi>n</mi></mrow></semantics></math></inline-formula>. Secondly, given a digital image <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula> with <inline-formula><math display="inline"><semantics><mrow><msup><mi>X</mi><mo>♯</mo></msup><mo>=</mo><mi>n</mi></mrow></semantics></math></inline-formula>, we find a certain condition that supports <inline-formula><math display="inline"><semantics><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>∈</mo><mi>F</mi><mo>(</mo><mi>C</mi><mi>o</mi><msub><mi>n</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula>. Thirdly, after finding some features of <inline-formula><math display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>C</mi><mi>o</mi><msub><mi>n</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>W</mi><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula>, we develop a method of making <inline-formula><math display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>C</mi><mi>o</mi><msub><mi>n</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>W</mi><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula> perfect according to the (even or odd) number <i>l</i> of <inline-formula><math display="inline"><semantics><msubsup><mi>C</mi><mi>k</mi><mrow><mi>n</mi><mo>,</mo><mi>l</mi></mrow></msubsup></semantics></math></inline-formula>. Finally, we prove that the perfectness of <inline-formula><math display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>C</mi><mi>o</mi><msub><mi>n</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>W</mi><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula> is equivalent to that of <inline-formula><math display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>C</mi><mi>o</mi><msub><mi>n</mi><mi>k</mi></msub><mrow><mo>(</mo><msubsup><mi>C</mi><mi>k</mi><mrow><mi>n</mi><mo>,</mo><mi>l</mi></mrow></msubsup><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula>. This can play an important role in studying fixed point theory and digital curve theory. This paper only deals with <i>k</i>-connected digital images <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula> such that <inline-formula><math display="inline"><semantics><mrow><msup><mi>X</mi><mo>♯</mo></msup><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/8/9/1617digital wedgealignmentperfectk-contractibilitydigital k-curvefixed point set |