Analysis of the Torsional Stability of Split Phases
The specificity of overhead power lines is associated with the fact that the length of conductors between the supporting structures can reach tens of thousands of meters. Wires and their components are exposed to climatic factors, viz. wind, rain, ice, snow. As compared to other structural elements,...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | Russian |
Published: |
Belarusian National Technical University
2019-11-01
|
Series: | Izvestiâ Vysših Učebnyh Zavedenij i Ènergetičeskih ob Edinennij SNG. Ènergetika |
Subjects: | |
Online Access: | https://energy.bntu.by/jour/article/view/1758 |
id |
doaj-7968357bc14a4c23ad8d09abccf06575 |
---|---|
record_format |
Article |
spelling |
doaj-7968357bc14a4c23ad8d09abccf065752021-07-29T08:45:41ZrusBelarusian National Technical UniversityIzvestiâ Vysših Učebnyh Zavedenij i Ènergetičeskih ob Edinennij SNG. Ènergetika1029-74482414-03412019-11-0162650351310.21122/1029-7448-2019-62-6-503-5131604Analysis of the Torsional Stability of Split PhasesI. I. Sergey0Y. G. Panamarenka1Y. V. Potachits2N. A. Yudina3Belarusian National Technical UniversityBelarusian National Technical UniversityBelarusian National Technical UniversityKazan State Power Engineering UniversityThe specificity of overhead power lines is associated with the fact that the length of conductors between the supporting structures can reach tens of thousands of meters. Wires and their components are exposed to climatic factors, viz. wind, rain, ice, snow. As compared to other structural elements, conductors are of the highest flexibility and lowest rigidity, and, therefore, they are the most sensitive elements to these effects. Since the early fifties of the XX century, the increase in energy consumption has caused the construction of high and ultra-high voltage overhead lines with split phases. For these types of conductors, new forms of oscillations have been noticed in the areas between the struts, the essence of which is torqueing the split phase. As a result, there is a violation of the torsional stability of the phase: collision of wires in the middle of sub-span and friction of wires of stranded conductor against each other, which leads to damaging conductors and, as a consequence, to disruption of power supply to consumers. Almost any overhead lines may be subjected to oscillations of wires in the span under the influence of wind. One of the types of such mechanical oscillations is galloping, i. e. low-frequency oscillations of wires with an amplitude reaching the value of the boom of wire sagging, and, taking into account the possibility of elongation of the wire, even exceeding it. Fluctuations in the galloping can cause significant mechanical forces and last long enough to lead to the destruction of structural elements of power lines, viz. wires, insulators, fittings and even pillars. Due to the large amplitude of oscillations, conductors of neighboring phases can approach each other at an unacceptable distance, resulting in a short circuit. The boundary value problem of the torsional stability calculation of the split phase with a given multiplicity of splitting has been set and solved. The critical lengths of the sub-spans at which the stable violation of torsional stability is most likely have been determined. A computer program has been developed, which can be used in the design of high-voltage lines with split phase.https://energy.bntu.by/jour/article/view/1758power engineeringoverhead linessupport structuressplit phasetorsional stabilitygalloping |
collection |
DOAJ |
language |
Russian |
format |
Article |
sources |
DOAJ |
author |
I. I. Sergey Y. G. Panamarenka Y. V. Potachits N. A. Yudina |
spellingShingle |
I. I. Sergey Y. G. Panamarenka Y. V. Potachits N. A. Yudina Analysis of the Torsional Stability of Split Phases Izvestiâ Vysših Učebnyh Zavedenij i Ènergetičeskih ob Edinennij SNG. Ènergetika power engineering overhead lines support structures split phase torsional stability galloping |
author_facet |
I. I. Sergey Y. G. Panamarenka Y. V. Potachits N. A. Yudina |
author_sort |
I. I. Sergey |
title |
Analysis of the Torsional Stability of Split Phases |
title_short |
Analysis of the Torsional Stability of Split Phases |
title_full |
Analysis of the Torsional Stability of Split Phases |
title_fullStr |
Analysis of the Torsional Stability of Split Phases |
title_full_unstemmed |
Analysis of the Torsional Stability of Split Phases |
title_sort |
analysis of the torsional stability of split phases |
publisher |
Belarusian National Technical University |
series |
Izvestiâ Vysših Učebnyh Zavedenij i Ènergetičeskih ob Edinennij SNG. Ènergetika |
issn |
1029-7448 2414-0341 |
publishDate |
2019-11-01 |
description |
The specificity of overhead power lines is associated with the fact that the length of conductors between the supporting structures can reach tens of thousands of meters. Wires and their components are exposed to climatic factors, viz. wind, rain, ice, snow. As compared to other structural elements, conductors are of the highest flexibility and lowest rigidity, and, therefore, they are the most sensitive elements to these effects. Since the early fifties of the XX century, the increase in energy consumption has caused the construction of high and ultra-high voltage overhead lines with split phases. For these types of conductors, new forms of oscillations have been noticed in the areas between the struts, the essence of which is torqueing the split phase. As a result, there is a violation of the torsional stability of the phase: collision of wires in the middle of sub-span and friction of wires of stranded conductor against each other, which leads to damaging conductors and, as a consequence, to disruption of power supply to consumers. Almost any overhead lines may be subjected to oscillations of wires in the span under the influence of wind. One of the types of such mechanical oscillations is galloping, i. e. low-frequency oscillations of wires with an amplitude reaching the value of the boom of wire sagging, and, taking into account the possibility of elongation of the wire, even exceeding it. Fluctuations in the galloping can cause significant mechanical forces and last long enough to lead to the destruction of structural elements of power lines, viz. wires, insulators, fittings and even pillars. Due to the large amplitude of oscillations, conductors of neighboring phases can approach each other at an unacceptable distance, resulting in a short circuit. The boundary value problem of the torsional stability calculation of the split phase with a given multiplicity of splitting has been set and solved. The critical lengths of the sub-spans at which the stable violation of torsional stability is most likely have been determined. A computer program has been developed, which can be used in the design of high-voltage lines with split phase. |
topic |
power engineering overhead lines support structures split phase torsional stability galloping |
url |
https://energy.bntu.by/jour/article/view/1758 |
work_keys_str_mv |
AT iisergey analysisofthetorsionalstabilityofsplitphases AT ygpanamarenka analysisofthetorsionalstabilityofsplitphases AT yvpotachits analysisofthetorsionalstabilityofsplitphases AT nayudina analysisofthetorsionalstabilityofsplitphases |
_version_ |
1721251798242557952 |