Ionic silver functionalized ovine forestomach matrix – a non-cytotoxic antimicrobial biomaterial for tissue regeneration applications
Abstract Background Antimicrobial technologies, including silver-containing medical devices, are increasingly utilized in clinical regimens to mitigate risks of microbial colonization. Silver-functionalized resorbable biomaterials for use in wound management and tissue regeneration applications have...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2019-02-01
|
Series: | Biomaterials Research |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s40824-019-0155-0 |
id |
doaj-795ca13b48d04df39afaf4783eab7c29 |
---|---|
record_format |
Article |
spelling |
doaj-795ca13b48d04df39afaf4783eab7c292020-11-25T01:10:22ZengBMCBiomaterials Research2055-71242019-02-0123111710.1186/s40824-019-0155-0Ionic silver functionalized ovine forestomach matrix – a non-cytotoxic antimicrobial biomaterial for tissue regeneration applicationsTanvi Karnik0Sandi G. Dempsey1Micheal J. Jerram2Arun Nagarajan3Ravindra Rajam4Barnaby C. H. May5Christopher H. Miller6Aroa BiosurgeryAroa BiosurgeryAroa BiosurgeryAroa BiosurgeryAroa BiosurgeryAroa BiosurgeryAroa BiosurgeryAbstract Background Antimicrobial technologies, including silver-containing medical devices, are increasingly utilized in clinical regimens to mitigate risks of microbial colonization. Silver-functionalized resorbable biomaterials for use in wound management and tissue regeneration applications have a narrow therapeutic index where antimicrobial effectiveness may be outweighed by adverse cytotoxicity. We examined the effects of ionic silver functionalization of an extracellular matrix (ECM) biomaterial derived from ovine forestomach (OFM-Ag) in terms of material properties, antimicrobial effectiveness and cytotoxicity profile. Methods Material properties of OFM-Ag were assessed by via biochemical analysis, microscopy, atomic absorption spectroscopy (AAS) and differential scanning calorimetry. The silver release profile of OFM-Ag was profiled by AAS and antimicrobial effectiveness testing utilized to determine the minimum effective concentration of silver in OFM-Ag in addition to the antimicrobial spectrum and wear time. Biofilm prevention properties of OFM-Ag in comparison to silver containing collagen dressing materials was quantified via in vitro crystal violet assay using a polymicrobial model. Toxicity of ionic silver, OFM-Ag and silver containing collagen dressing materials was assessed toward mammalian fibroblasts using elution cytoxicity testing. Results OFM-Ag retained the native ECM compositional and structural characteristic of non-silver functionalized ECM material while imparting broad spectrum antimicrobial effectiveness toward 11 clinically relevant microbial species including fungi and drug resistant strains, maintaining effectiveness over a wear time duration of 7-days. OFM-Ag demonstrated significant prevention of polymicrobial biofilm formation compared to non-antimicrobial and silver-containing collagen dressing materials. Where silver-containing collagen dressing materials exhibited cytotoxic effects toward mammalian fibroblasts, OFM-Ag was determined to be non-cytotoxic, silver elution studies indicated sustained retention of silver in OFM-Ag as a possible mechanism for the attenuated cytotoxicity. Conclusions This work demonstrates ECM biomaterials may be functionalized with silver to favourably shift the balance between detrimental cytotoxic potential and beneficial antimicrobial effects, while preserving the ECM structure and function of utility in tissue regeneration applications.http://link.springer.com/article/10.1186/s40824-019-0155-0Chronic woundsSilverBiofilmCytotoxicityAntimicrobialECM (extracellular matrix) |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Tanvi Karnik Sandi G. Dempsey Micheal J. Jerram Arun Nagarajan Ravindra Rajam Barnaby C. H. May Christopher H. Miller |
spellingShingle |
Tanvi Karnik Sandi G. Dempsey Micheal J. Jerram Arun Nagarajan Ravindra Rajam Barnaby C. H. May Christopher H. Miller Ionic silver functionalized ovine forestomach matrix – a non-cytotoxic antimicrobial biomaterial for tissue regeneration applications Biomaterials Research Chronic wounds Silver Biofilm Cytotoxicity Antimicrobial ECM (extracellular matrix) |
author_facet |
Tanvi Karnik Sandi G. Dempsey Micheal J. Jerram Arun Nagarajan Ravindra Rajam Barnaby C. H. May Christopher H. Miller |
author_sort |
Tanvi Karnik |
title |
Ionic silver functionalized ovine forestomach matrix – a non-cytotoxic antimicrobial biomaterial for tissue regeneration applications |
title_short |
Ionic silver functionalized ovine forestomach matrix – a non-cytotoxic antimicrobial biomaterial for tissue regeneration applications |
title_full |
Ionic silver functionalized ovine forestomach matrix – a non-cytotoxic antimicrobial biomaterial for tissue regeneration applications |
title_fullStr |
Ionic silver functionalized ovine forestomach matrix – a non-cytotoxic antimicrobial biomaterial for tissue regeneration applications |
title_full_unstemmed |
Ionic silver functionalized ovine forestomach matrix – a non-cytotoxic antimicrobial biomaterial for tissue regeneration applications |
title_sort |
ionic silver functionalized ovine forestomach matrix – a non-cytotoxic antimicrobial biomaterial for tissue regeneration applications |
publisher |
BMC |
series |
Biomaterials Research |
issn |
2055-7124 |
publishDate |
2019-02-01 |
description |
Abstract Background Antimicrobial technologies, including silver-containing medical devices, are increasingly utilized in clinical regimens to mitigate risks of microbial colonization. Silver-functionalized resorbable biomaterials for use in wound management and tissue regeneration applications have a narrow therapeutic index where antimicrobial effectiveness may be outweighed by adverse cytotoxicity. We examined the effects of ionic silver functionalization of an extracellular matrix (ECM) biomaterial derived from ovine forestomach (OFM-Ag) in terms of material properties, antimicrobial effectiveness and cytotoxicity profile. Methods Material properties of OFM-Ag were assessed by via biochemical analysis, microscopy, atomic absorption spectroscopy (AAS) and differential scanning calorimetry. The silver release profile of OFM-Ag was profiled by AAS and antimicrobial effectiveness testing utilized to determine the minimum effective concentration of silver in OFM-Ag in addition to the antimicrobial spectrum and wear time. Biofilm prevention properties of OFM-Ag in comparison to silver containing collagen dressing materials was quantified via in vitro crystal violet assay using a polymicrobial model. Toxicity of ionic silver, OFM-Ag and silver containing collagen dressing materials was assessed toward mammalian fibroblasts using elution cytoxicity testing. Results OFM-Ag retained the native ECM compositional and structural characteristic of non-silver functionalized ECM material while imparting broad spectrum antimicrobial effectiveness toward 11 clinically relevant microbial species including fungi and drug resistant strains, maintaining effectiveness over a wear time duration of 7-days. OFM-Ag demonstrated significant prevention of polymicrobial biofilm formation compared to non-antimicrobial and silver-containing collagen dressing materials. Where silver-containing collagen dressing materials exhibited cytotoxic effects toward mammalian fibroblasts, OFM-Ag was determined to be non-cytotoxic, silver elution studies indicated sustained retention of silver in OFM-Ag as a possible mechanism for the attenuated cytotoxicity. Conclusions This work demonstrates ECM biomaterials may be functionalized with silver to favourably shift the balance between detrimental cytotoxic potential and beneficial antimicrobial effects, while preserving the ECM structure and function of utility in tissue regeneration applications. |
topic |
Chronic wounds Silver Biofilm Cytotoxicity Antimicrobial ECM (extracellular matrix) |
url |
http://link.springer.com/article/10.1186/s40824-019-0155-0 |
work_keys_str_mv |
AT tanvikarnik ionicsilverfunctionalizedovineforestomachmatrixanoncytotoxicantimicrobialbiomaterialfortissueregenerationapplications AT sandigdempsey ionicsilverfunctionalizedovineforestomachmatrixanoncytotoxicantimicrobialbiomaterialfortissueregenerationapplications AT michealjjerram ionicsilverfunctionalizedovineforestomachmatrixanoncytotoxicantimicrobialbiomaterialfortissueregenerationapplications AT arunnagarajan ionicsilverfunctionalizedovineforestomachmatrixanoncytotoxicantimicrobialbiomaterialfortissueregenerationapplications AT ravindrarajam ionicsilverfunctionalizedovineforestomachmatrixanoncytotoxicantimicrobialbiomaterialfortissueregenerationapplications AT barnabychmay ionicsilverfunctionalizedovineforestomachmatrixanoncytotoxicantimicrobialbiomaterialfortissueregenerationapplications AT christopherhmiller ionicsilverfunctionalizedovineforestomachmatrixanoncytotoxicantimicrobialbiomaterialfortissueregenerationapplications |
_version_ |
1725175245338312704 |