The periodic points of ε-contractive maps in fuzzy metric spaces
In this paper, we introduce the notion of ε-contractive maps in fuzzy metric space (X, M, ∗) and study the periodicities of ε-contractive maps. We show that if (X, M, ∗) is compact and f : X −→ X is ε-contractive, then P(f) = ∩ ∞n=1f n (X) and each connected component of X contains at most one perio...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitat Politècnica de València
2021-10-01
|
Series: | Applied General Topology |
Subjects: | |
Online Access: | https://polipapers.upv.es/index.php/AGT/article/view/14449 |
id |
doaj-7952308e845c442f9df5017bb84e6742 |
---|---|
record_format |
Article |
spelling |
doaj-7952308e845c442f9df5017bb84e67422021-10-04T11:53:16ZengUniversitat Politècnica de ValènciaApplied General Topology1576-94021989-41472021-10-0122231131910.4995/agt.2021.144499030The periodic points of ε-contractive maps in fuzzy metric spacesTaixiang Sun0Caihong Han1Guangwang Su2Bin Qin3Lue Li4Guangxi University of Finance and EconomicsGuangxi University of Finance and EconomicsGuangxi University of Finance and EconomicsGuangxi (ASEAN)Research Center of Finance and EconomicsGuangxi University of Finance and EconomicsIn this paper, we introduce the notion of ε-contractive maps in fuzzy metric space (X, M, ∗) and study the periodicities of ε-contractive maps. We show that if (X, M, ∗) is compact and f : X −→ X is ε-contractive, then P(f) = ∩ ∞n=1f n (X) and each connected component of X contains at most one periodic point of f, where P(f) is the set of periodic points of f. Furthermore, we present two examples to illustrate the applicability of the obtained results.https://polipapers.upv.es/index.php/AGT/article/view/14449fuzzy metric spaceε-contractive mapperiodic point |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Taixiang Sun Caihong Han Guangwang Su Bin Qin Lue Li |
spellingShingle |
Taixiang Sun Caihong Han Guangwang Su Bin Qin Lue Li The periodic points of ε-contractive maps in fuzzy metric spaces Applied General Topology fuzzy metric space ε-contractive map periodic point |
author_facet |
Taixiang Sun Caihong Han Guangwang Su Bin Qin Lue Li |
author_sort |
Taixiang Sun |
title |
The periodic points of ε-contractive maps in fuzzy metric spaces |
title_short |
The periodic points of ε-contractive maps in fuzzy metric spaces |
title_full |
The periodic points of ε-contractive maps in fuzzy metric spaces |
title_fullStr |
The periodic points of ε-contractive maps in fuzzy metric spaces |
title_full_unstemmed |
The periodic points of ε-contractive maps in fuzzy metric spaces |
title_sort |
periodic points of ε-contractive maps in fuzzy metric spaces |
publisher |
Universitat Politècnica de València |
series |
Applied General Topology |
issn |
1576-9402 1989-4147 |
publishDate |
2021-10-01 |
description |
In this paper, we introduce the notion of ε-contractive maps in fuzzy metric space (X, M, ∗) and study the periodicities of ε-contractive maps. We show that if (X, M, ∗) is compact and f : X −→ X is ε-contractive, then P(f) = ∩ ∞n=1f n (X) and each connected component of X contains at most one periodic point of f, where P(f) is the set of periodic points of f. Furthermore, we present two examples to illustrate the applicability of the obtained results. |
topic |
fuzzy metric space ε-contractive map periodic point |
url |
https://polipapers.upv.es/index.php/AGT/article/view/14449 |
work_keys_str_mv |
AT taixiangsun theperiodicpointsofecontractivemapsinfuzzymetricspaces AT caihonghan theperiodicpointsofecontractivemapsinfuzzymetricspaces AT guangwangsu theperiodicpointsofecontractivemapsinfuzzymetricspaces AT binqin theperiodicpointsofecontractivemapsinfuzzymetricspaces AT lueli theperiodicpointsofecontractivemapsinfuzzymetricspaces AT taixiangsun periodicpointsofecontractivemapsinfuzzymetricspaces AT caihonghan periodicpointsofecontractivemapsinfuzzymetricspaces AT guangwangsu periodicpointsofecontractivemapsinfuzzymetricspaces AT binqin periodicpointsofecontractivemapsinfuzzymetricspaces AT lueli periodicpointsofecontractivemapsinfuzzymetricspaces |
_version_ |
1716844134275219456 |