A practical Tamm plasmon sensor based on porous Si

We report the fabrication and characterization of a new type of porous Si sensor using the Tamm plasmon resonance. The sensor consists of a photonic crystal created by periodic electrochemical anodization of crystalline Si, followed by partial thermal oxidation. The photonic crystal is transferred t...

Full description

Bibliographic Details
Main Authors: Alexandre Juneau-Fecteau, Rémy Savin, Abderraouf Boucherif, Luc G. Fréchette
Format: Article
Language:English
Published: AIP Publishing LLC 2021-06-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/5.0054629
id doaj-79511a3ecaee4f5b9b07bd6d099a94eb
record_format Article
spelling doaj-79511a3ecaee4f5b9b07bd6d099a94eb2021-07-08T13:20:01ZengAIP Publishing LLCAIP Advances2158-32262021-06-01116065305065305-710.1063/5.0054629A practical Tamm plasmon sensor based on porous SiAlexandre Juneau-Fecteau0Rémy Savin1Abderraouf Boucherif2Luc G. Fréchette3Institut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, Québec J1K OA5, CanadaInstitut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, Québec J1K OA5, CanadaInstitut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, Québec J1K OA5, CanadaInstitut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, Québec J1K OA5, CanadaWe report the fabrication and characterization of a new type of porous Si sensor using the Tamm plasmon resonance. The sensor consists of a photonic crystal created by periodic electrochemical anodization of crystalline Si, followed by partial thermal oxidation. The photonic crystal is transferred to a Au-coated glass substrate to allow optical measurements of surface modes at the metal/porous Si interface. This configuration greatly simplifies sensing since an analyte can be introduced in the pores from the opposite side of the metal layer without disrupting the optical path. The fabricated device exhibits a Tamm plasmon resonance within the photonic bandgap at a wavelength of 794 nm with a quality factor of 25. We observe a wavelength shift of the resonance when the nanosized pores are infiltrated with different concentrations of a toluene/ethanol solution. The measured sensitivity reaches 139 nm/RIU, in agreement with scattering matrix simulations and more than twice larger than those previously reported for Tamm plasmons. The quality factor and sensitivity yield a sensor figure of merit of 4. We also show that the electric field within the Tamm device is confined within a mode volume twice smaller than within a Fabry–Pérot resonator of comparable size according to calculations.http://dx.doi.org/10.1063/5.0054629
collection DOAJ
language English
format Article
sources DOAJ
author Alexandre Juneau-Fecteau
Rémy Savin
Abderraouf Boucherif
Luc G. Fréchette
spellingShingle Alexandre Juneau-Fecteau
Rémy Savin
Abderraouf Boucherif
Luc G. Fréchette
A practical Tamm plasmon sensor based on porous Si
AIP Advances
author_facet Alexandre Juneau-Fecteau
Rémy Savin
Abderraouf Boucherif
Luc G. Fréchette
author_sort Alexandre Juneau-Fecteau
title A practical Tamm plasmon sensor based on porous Si
title_short A practical Tamm plasmon sensor based on porous Si
title_full A practical Tamm plasmon sensor based on porous Si
title_fullStr A practical Tamm plasmon sensor based on porous Si
title_full_unstemmed A practical Tamm plasmon sensor based on porous Si
title_sort practical tamm plasmon sensor based on porous si
publisher AIP Publishing LLC
series AIP Advances
issn 2158-3226
publishDate 2021-06-01
description We report the fabrication and characterization of a new type of porous Si sensor using the Tamm plasmon resonance. The sensor consists of a photonic crystal created by periodic electrochemical anodization of crystalline Si, followed by partial thermal oxidation. The photonic crystal is transferred to a Au-coated glass substrate to allow optical measurements of surface modes at the metal/porous Si interface. This configuration greatly simplifies sensing since an analyte can be introduced in the pores from the opposite side of the metal layer without disrupting the optical path. The fabricated device exhibits a Tamm plasmon resonance within the photonic bandgap at a wavelength of 794 nm with a quality factor of 25. We observe a wavelength shift of the resonance when the nanosized pores are infiltrated with different concentrations of a toluene/ethanol solution. The measured sensitivity reaches 139 nm/RIU, in agreement with scattering matrix simulations and more than twice larger than those previously reported for Tamm plasmons. The quality factor and sensitivity yield a sensor figure of merit of 4. We also show that the electric field within the Tamm device is confined within a mode volume twice smaller than within a Fabry–Pérot resonator of comparable size according to calculations.
url http://dx.doi.org/10.1063/5.0054629
work_keys_str_mv AT alexandrejuneaufecteau apracticaltammplasmonsensorbasedonporoussi
AT remysavin apracticaltammplasmonsensorbasedonporoussi
AT abderraoufboucherif apracticaltammplasmonsensorbasedonporoussi
AT lucgfrechette apracticaltammplasmonsensorbasedonporoussi
AT alexandrejuneaufecteau practicaltammplasmonsensorbasedonporoussi
AT remysavin practicaltammplasmonsensorbasedonporoussi
AT abderraoufboucherif practicaltammplasmonsensorbasedonporoussi
AT lucgfrechette practicaltammplasmonsensorbasedonporoussi
_version_ 1721313326703575040