Investigation of the Thermal QCD Matter from Canonical Sectors

We discuss the thermal phase structure of quantum chromodynamics (QCD) at zero real chemical potential (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>μ</mi><mi mathvariant=...

Full description

Bibliographic Details
Main Author: Kouji Kashiwa
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/7/1273
id doaj-78fef04df5de49c4bc60194f6d5d4eee
record_format Article
spelling doaj-78fef04df5de49c4bc60194f6d5d4eee2021-07-23T14:09:30ZengMDPI AGSymmetry2073-89942021-07-01131273127310.3390/sym13071273Investigation of the Thermal QCD Matter from Canonical SectorsKouji Kashiwa0Department of Computer Science and Engineering, Fukuoka Institute of Technology, Wajiro, Fukuoka 811-0295, JapanWe discuss the thermal phase structure of quantum chromodynamics (QCD) at zero real chemical potential (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>μ</mi><mi mathvariant="normal">R</mi></msub><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>) from the viewpoint of canonical sectors. The canonical sectors take the system to pieces of each elementary excitation mode and thus seem to be useful in the investigation of the confinement–deconfinement nature of QCD. Since the canonical sectors themselves are difficult to compute, we propose a convenient quantity which may determine the structural changes of the canonical sectors. We discuss the quantity qualitatively by adopting lattice QCD prediction for the phase structure with finite imaginary chemical potential. In addition, we numerically estimate this quantity by using the simple QCD effective model. It is shown that there should be a sharp change of the canonical sectors near the Roberge–Weiss endpoint temperature at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>μ</mi><mi mathvariant="normal">R</mi></msub><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>. Then, the behavior of the quark number density at finite imaginary chemical potential plays a crucial role in clarifying the thermal QCD properties.https://www.mdpi.com/2073-8994/13/7/1273QCD phase diagramcanonical ensembleconfinement–deconfinement transition
collection DOAJ
language English
format Article
sources DOAJ
author Kouji Kashiwa
spellingShingle Kouji Kashiwa
Investigation of the Thermal QCD Matter from Canonical Sectors
Symmetry
QCD phase diagram
canonical ensemble
confinement–deconfinement transition
author_facet Kouji Kashiwa
author_sort Kouji Kashiwa
title Investigation of the Thermal QCD Matter from Canonical Sectors
title_short Investigation of the Thermal QCD Matter from Canonical Sectors
title_full Investigation of the Thermal QCD Matter from Canonical Sectors
title_fullStr Investigation of the Thermal QCD Matter from Canonical Sectors
title_full_unstemmed Investigation of the Thermal QCD Matter from Canonical Sectors
title_sort investigation of the thermal qcd matter from canonical sectors
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2021-07-01
description We discuss the thermal phase structure of quantum chromodynamics (QCD) at zero real chemical potential (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>μ</mi><mi mathvariant="normal">R</mi></msub><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>) from the viewpoint of canonical sectors. The canonical sectors take the system to pieces of each elementary excitation mode and thus seem to be useful in the investigation of the confinement–deconfinement nature of QCD. Since the canonical sectors themselves are difficult to compute, we propose a convenient quantity which may determine the structural changes of the canonical sectors. We discuss the quantity qualitatively by adopting lattice QCD prediction for the phase structure with finite imaginary chemical potential. In addition, we numerically estimate this quantity by using the simple QCD effective model. It is shown that there should be a sharp change of the canonical sectors near the Roberge–Weiss endpoint temperature at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>μ</mi><mi mathvariant="normal">R</mi></msub><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>. Then, the behavior of the quark number density at finite imaginary chemical potential plays a crucial role in clarifying the thermal QCD properties.
topic QCD phase diagram
canonical ensemble
confinement–deconfinement transition
url https://www.mdpi.com/2073-8994/13/7/1273
work_keys_str_mv AT koujikashiwa investigationofthethermalqcdmatterfromcanonicalsectors
_version_ 1721285523048235008