Investigation of the Thermal QCD Matter from Canonical Sectors
We discuss the thermal phase structure of quantum chromodynamics (QCD) at zero real chemical potential (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>μ</mi><mi mathvariant=...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-07-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/13/7/1273 |
id |
doaj-78fef04df5de49c4bc60194f6d5d4eee |
---|---|
record_format |
Article |
spelling |
doaj-78fef04df5de49c4bc60194f6d5d4eee2021-07-23T14:09:30ZengMDPI AGSymmetry2073-89942021-07-01131273127310.3390/sym13071273Investigation of the Thermal QCD Matter from Canonical SectorsKouji Kashiwa0Department of Computer Science and Engineering, Fukuoka Institute of Technology, Wajiro, Fukuoka 811-0295, JapanWe discuss the thermal phase structure of quantum chromodynamics (QCD) at zero real chemical potential (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>μ</mi><mi mathvariant="normal">R</mi></msub><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>) from the viewpoint of canonical sectors. The canonical sectors take the system to pieces of each elementary excitation mode and thus seem to be useful in the investigation of the confinement–deconfinement nature of QCD. Since the canonical sectors themselves are difficult to compute, we propose a convenient quantity which may determine the structural changes of the canonical sectors. We discuss the quantity qualitatively by adopting lattice QCD prediction for the phase structure with finite imaginary chemical potential. In addition, we numerically estimate this quantity by using the simple QCD effective model. It is shown that there should be a sharp change of the canonical sectors near the Roberge–Weiss endpoint temperature at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>μ</mi><mi mathvariant="normal">R</mi></msub><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>. Then, the behavior of the quark number density at finite imaginary chemical potential plays a crucial role in clarifying the thermal QCD properties.https://www.mdpi.com/2073-8994/13/7/1273QCD phase diagramcanonical ensembleconfinement–deconfinement transition |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Kouji Kashiwa |
spellingShingle |
Kouji Kashiwa Investigation of the Thermal QCD Matter from Canonical Sectors Symmetry QCD phase diagram canonical ensemble confinement–deconfinement transition |
author_facet |
Kouji Kashiwa |
author_sort |
Kouji Kashiwa |
title |
Investigation of the Thermal QCD Matter from Canonical Sectors |
title_short |
Investigation of the Thermal QCD Matter from Canonical Sectors |
title_full |
Investigation of the Thermal QCD Matter from Canonical Sectors |
title_fullStr |
Investigation of the Thermal QCD Matter from Canonical Sectors |
title_full_unstemmed |
Investigation of the Thermal QCD Matter from Canonical Sectors |
title_sort |
investigation of the thermal qcd matter from canonical sectors |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2021-07-01 |
description |
We discuss the thermal phase structure of quantum chromodynamics (QCD) at zero real chemical potential (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>μ</mi><mi mathvariant="normal">R</mi></msub><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>) from the viewpoint of canonical sectors. The canonical sectors take the system to pieces of each elementary excitation mode and thus seem to be useful in the investigation of the confinement–deconfinement nature of QCD. Since the canonical sectors themselves are difficult to compute, we propose a convenient quantity which may determine the structural changes of the canonical sectors. We discuss the quantity qualitatively by adopting lattice QCD prediction for the phase structure with finite imaginary chemical potential. In addition, we numerically estimate this quantity by using the simple QCD effective model. It is shown that there should be a sharp change of the canonical sectors near the Roberge–Weiss endpoint temperature at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>μ</mi><mi mathvariant="normal">R</mi></msub><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>. Then, the behavior of the quark number density at finite imaginary chemical potential plays a crucial role in clarifying the thermal QCD properties. |
topic |
QCD phase diagram canonical ensemble confinement–deconfinement transition |
url |
https://www.mdpi.com/2073-8994/13/7/1273 |
work_keys_str_mv |
AT koujikashiwa investigationofthethermalqcdmatterfromcanonicalsectors |
_version_ |
1721285523048235008 |