Summary: | A novel Vernier type magnetically geared direct-drive generator for large wind turbines is introduced in this paper. Conventional Vernier-type machines and most of the direct-drive wind turbine generators use excessive amount of permanent magnet, which increases the overall cost and makes the manufacturing process challenging. In this paper, an electrically excited (PM_less) claw-pole type Vernier machine is presented. This new topology has the potential of reducing mass and cost of the generator, and can make the construction easy in manufacturing and handling. Analytical designs are verified using 3D finite-element simulations and several designs are evaluated to find the optimum design for a 7.5 MW, 12 rpm wind turbine application. It is shown, that the required torque can be achieved with an outer diameter of 7.5 m, and with a mass of 172 t (including the structural mass). The proposed generator is compared with commercial direct-drive generators, and it is found that the proposed generator has the highest torque density with 34.7 kNm/t.
|