Evaluation of aerosol and cloud properties in three climate models using MODIS observations and its corresponding COSP simulator, as well as their application in aerosol–cloud interactions

<p>The evaluation of modelling diagnostics with appropriate observations is an important task that establishes the capabilities and reliability of models. In this study we compare aerosol and cloud properties obtained from three different climate models (ECHAM-HAM, ECHAM-HAM-SALSA, and NorESM)...

Full description

Bibliographic Details
Main Authors: G. Saponaro, M. K. Sporre, D. Neubauer, H. Kokkola, P. Kolmonen, L. Sogacheva, A. Arola, G. de Leeuw, I. H. H. Karset, A. Laaksonen, U. Lohmann
Format: Article
Language:English
Published: Copernicus Publications 2020-02-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/20/1607/2020/acp-20-1607-2020.pdf
id doaj-78d43acf17ef4986ab49397466628086
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author G. Saponaro
M. K. Sporre
M. K. Sporre
D. Neubauer
H. Kokkola
P. Kolmonen
L. Sogacheva
A. Arola
G. de Leeuw
I. H. H. Karset
A. Laaksonen
U. Lohmann
spellingShingle G. Saponaro
M. K. Sporre
M. K. Sporre
D. Neubauer
H. Kokkola
P. Kolmonen
L. Sogacheva
A. Arola
G. de Leeuw
I. H. H. Karset
A. Laaksonen
U. Lohmann
Evaluation of aerosol and cloud properties in three climate models using MODIS observations and its corresponding COSP simulator, as well as their application in aerosol–cloud interactions
Atmospheric Chemistry and Physics
author_facet G. Saponaro
M. K. Sporre
M. K. Sporre
D. Neubauer
H. Kokkola
P. Kolmonen
L. Sogacheva
A. Arola
G. de Leeuw
I. H. H. Karset
A. Laaksonen
U. Lohmann
author_sort G. Saponaro
title Evaluation of aerosol and cloud properties in three climate models using MODIS observations and its corresponding COSP simulator, as well as their application in aerosol–cloud interactions
title_short Evaluation of aerosol and cloud properties in three climate models using MODIS observations and its corresponding COSP simulator, as well as their application in aerosol–cloud interactions
title_full Evaluation of aerosol and cloud properties in three climate models using MODIS observations and its corresponding COSP simulator, as well as their application in aerosol–cloud interactions
title_fullStr Evaluation of aerosol and cloud properties in three climate models using MODIS observations and its corresponding COSP simulator, as well as their application in aerosol–cloud interactions
title_full_unstemmed Evaluation of aerosol and cloud properties in three climate models using MODIS observations and its corresponding COSP simulator, as well as their application in aerosol–cloud interactions
title_sort evaluation of aerosol and cloud properties in three climate models using modis observations and its corresponding cosp simulator, as well as their application in aerosol–cloud interactions
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2020-02-01
description <p>The evaluation of modelling diagnostics with appropriate observations is an important task that establishes the capabilities and reliability of models. In this study we compare aerosol and cloud properties obtained from three different climate models (ECHAM-HAM, ECHAM-HAM-SALSA, and NorESM) with satellite observations using Moderate Resolution Imaging Spectroradiometer (MODIS) data. The simulator MODIS-COSP version 1.4 was implemented into the climate models to obtain MODIS-like cloud diagnostics, thus enabling model-to-model and model-to-satellite comparisons. Cloud droplet number concentrations (CDNCs) are derived identically from MODIS-COSP-simulated and MODIS-retrieved values of cloud optical depth and effective radius. For CDNC, the models capture the observed spatial distribution of higher values typically found near the coasts, downwind of the major continents, and lower values over the remote ocean and land areas. However, the COSP-simulated CDNC values are higher than those observed, whilst the direct model CDNC output is significantly lower than the MODIS-COSP diagnostics. NorESM produces large spatial biases for ice cloud properties and thick clouds over land. Despite having identical cloud modules, ECHAM-HAM and ECHAM-HAM-SALSA diverge in their representation of spatial and vertical distributions of clouds. From the spatial distributions of aerosol optical depth (AOD) and aerosol index (AI), we find that NorESM shows large biases for AOD over bright land surfaces, while discrepancies between ECHAM-HAM and ECHAM-HAM-SALSA can be observed mainly over oceans. Overall, the AIs from the different models are in good agreement globally, with higher negative biases in the Northern Hemisphere. We evaluate the aerosol–cloud interactions by computing the sensitivity parameter ACI<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi/><mi mathvariant="normal">CDNC</mi></msub><mo>=</mo><mi mathvariant="normal">d</mi><mi>ln⁡</mi><mo>(</mo><mtext>CDNC</mtext><mo>)</mo><mo>/</mo><mi mathvariant="normal">d</mi><mi>ln⁡</mi><mo>(</mo><mtext>AI</mtext><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="132pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="27cfdc758e02ed52781be6c73107de35"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-1607-2020-ie00001.svg" width="132pt" height="14pt" src="acp-20-1607-2020-ie00001.png"/></svg:svg></span></span> on a global scale. However, 1 year of data may be considered not enough to assess the similarity or dissimilarities of the models due to large temporal variability in cloud properties. This study shows how simulators facilitate the evaluation of cloud properties and expose model deficiencies, which are necessary steps to further improve the parameterisation in climate models.</p>
url https://www.atmos-chem-phys.net/20/1607/2020/acp-20-1607-2020.pdf
work_keys_str_mv AT gsaponaro evaluationofaerosolandcloudpropertiesinthreeclimatemodelsusingmodisobservationsanditscorrespondingcospsimulatoraswellastheirapplicationinaerosolcloudinteractions
AT mksporre evaluationofaerosolandcloudpropertiesinthreeclimatemodelsusingmodisobservationsanditscorrespondingcospsimulatoraswellastheirapplicationinaerosolcloudinteractions
AT mksporre evaluationofaerosolandcloudpropertiesinthreeclimatemodelsusingmodisobservationsanditscorrespondingcospsimulatoraswellastheirapplicationinaerosolcloudinteractions
AT dneubauer evaluationofaerosolandcloudpropertiesinthreeclimatemodelsusingmodisobservationsanditscorrespondingcospsimulatoraswellastheirapplicationinaerosolcloudinteractions
AT hkokkola evaluationofaerosolandcloudpropertiesinthreeclimatemodelsusingmodisobservationsanditscorrespondingcospsimulatoraswellastheirapplicationinaerosolcloudinteractions
AT pkolmonen evaluationofaerosolandcloudpropertiesinthreeclimatemodelsusingmodisobservationsanditscorrespondingcospsimulatoraswellastheirapplicationinaerosolcloudinteractions
AT lsogacheva evaluationofaerosolandcloudpropertiesinthreeclimatemodelsusingmodisobservationsanditscorrespondingcospsimulatoraswellastheirapplicationinaerosolcloudinteractions
AT aarola evaluationofaerosolandcloudpropertiesinthreeclimatemodelsusingmodisobservationsanditscorrespondingcospsimulatoraswellastheirapplicationinaerosolcloudinteractions
AT gdeleeuw evaluationofaerosolandcloudpropertiesinthreeclimatemodelsusingmodisobservationsanditscorrespondingcospsimulatoraswellastheirapplicationinaerosolcloudinteractions
AT ihhkarset evaluationofaerosolandcloudpropertiesinthreeclimatemodelsusingmodisobservationsanditscorrespondingcospsimulatoraswellastheirapplicationinaerosolcloudinteractions
AT alaaksonen evaluationofaerosolandcloudpropertiesinthreeclimatemodelsusingmodisobservationsanditscorrespondingcospsimulatoraswellastheirapplicationinaerosolcloudinteractions
AT ulohmann evaluationofaerosolandcloudpropertiesinthreeclimatemodelsusingmodisobservationsanditscorrespondingcospsimulatoraswellastheirapplicationinaerosolcloudinteractions
_version_ 1725154341814272000
spelling doaj-78d43acf17ef4986ab493974666280862020-11-25T01:15:07ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242020-02-01201607162610.5194/acp-20-1607-2020Evaluation of aerosol and cloud properties in three climate models using MODIS observations and its corresponding COSP simulator, as well as their application in aerosol–cloud interactionsG. Saponaro0M. K. Sporre1M. K. Sporre2D. Neubauer3H. Kokkola4P. Kolmonen5L. Sogacheva6A. Arola7G. de Leeuw8I. H. H. Karset9A. Laaksonen10U. Lohmann11Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, FinlandDepartment of Geosciences, University of Oslo, Oslo, Norwaynow at: Department of Physics, Lund University, Lund, SwedenInstitute for Atmospheric and Climate Science, ETH Zurich, Zurich, 8092, SwitzerlandFinnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, FinlandFinnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, FinlandFinnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, FinlandFinnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, FinlandFinnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, FinlandDepartment of Geosciences, University of Oslo, Oslo, NorwayFinnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, FinlandInstitute for Atmospheric and Climate Science, ETH Zurich, Zurich, 8092, Switzerland<p>The evaluation of modelling diagnostics with appropriate observations is an important task that establishes the capabilities and reliability of models. In this study we compare aerosol and cloud properties obtained from three different climate models (ECHAM-HAM, ECHAM-HAM-SALSA, and NorESM) with satellite observations using Moderate Resolution Imaging Spectroradiometer (MODIS) data. The simulator MODIS-COSP version 1.4 was implemented into the climate models to obtain MODIS-like cloud diagnostics, thus enabling model-to-model and model-to-satellite comparisons. Cloud droplet number concentrations (CDNCs) are derived identically from MODIS-COSP-simulated and MODIS-retrieved values of cloud optical depth and effective radius. For CDNC, the models capture the observed spatial distribution of higher values typically found near the coasts, downwind of the major continents, and lower values over the remote ocean and land areas. However, the COSP-simulated CDNC values are higher than those observed, whilst the direct model CDNC output is significantly lower than the MODIS-COSP diagnostics. NorESM produces large spatial biases for ice cloud properties and thick clouds over land. Despite having identical cloud modules, ECHAM-HAM and ECHAM-HAM-SALSA diverge in their representation of spatial and vertical distributions of clouds. From the spatial distributions of aerosol optical depth (AOD) and aerosol index (AI), we find that NorESM shows large biases for AOD over bright land surfaces, while discrepancies between ECHAM-HAM and ECHAM-HAM-SALSA can be observed mainly over oceans. Overall, the AIs from the different models are in good agreement globally, with higher negative biases in the Northern Hemisphere. We evaluate the aerosol–cloud interactions by computing the sensitivity parameter ACI<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi/><mi mathvariant="normal">CDNC</mi></msub><mo>=</mo><mi mathvariant="normal">d</mi><mi>ln⁡</mi><mo>(</mo><mtext>CDNC</mtext><mo>)</mo><mo>/</mo><mi mathvariant="normal">d</mi><mi>ln⁡</mi><mo>(</mo><mtext>AI</mtext><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="132pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="27cfdc758e02ed52781be6c73107de35"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-1607-2020-ie00001.svg" width="132pt" height="14pt" src="acp-20-1607-2020-ie00001.png"/></svg:svg></span></span> on a global scale. However, 1 year of data may be considered not enough to assess the similarity or dissimilarities of the models due to large temporal variability in cloud properties. This study shows how simulators facilitate the evaluation of cloud properties and expose model deficiencies, which are necessary steps to further improve the parameterisation in climate models.</p>https://www.atmos-chem-phys.net/20/1607/2020/acp-20-1607-2020.pdf