Modules for Automated Validation and Comparison of Models of Neurophysiological and Neurocognitive Biomarkers of Psychiatric Disorders: ASSRUnit—A Case Study

The characterization of biomarkers has been a central goal of research in psychiatry over the last years. While most of this research has focused on the identification of biomarkers, using various experimental approaches, it has been recognized that their instantiations, through computational models...

Full description

Bibliographic Details
Main Authors: Christoph Metzner, Tuomo Mäki-Marttunen, Bartosz Zurowski, Volker Steuber
Format: Article
Language:English
Published: The MIT Press 2018-07-01
Series:Computational Psychiatry
Subjects:
Online Access:https://www.mitpressjournals.org/doi/pdf/10.1162/cpsy_a_00015
Description
Summary:The characterization of biomarkers has been a central goal of research in psychiatry over the last years. While most of this research has focused on the identification of biomarkers, using various experimental approaches, it has been recognized that their instantiations, through computational models, have great potential to help us understand and interpret these experimental results. However, the enormous increase in available neurophysiological and neurocognitive as well as computational data also poses new challenges. How can a researcher stay on top of the experimental literature? How can computational modeling data be efficiently compared to experimental data? How can computational modeling most effectively inform experimentalists? Recently, a general scientific framework for the generation of executable tests that automatically compare model results to experimental observations, SciUnit, has been proposed. Here we exploit this framework for research in psychiatry to address the challenges mentioned. We extend the SciUnit framework by adding an experimental database, which contains a comprehensive collection of relevant experimental observations, and a prediction database, which contains a collection of predictions generated by computational models. Together with appropriately designed SciUnit tests and methods to mine and visualize the databases, model data, and test results, this extended framework has the potential to greatly facilitate the use of computational models in psychiatry. As an initial example, we present ASSRUnit, a module for auditory steady-state response deficits in psychiatric disorders.
ISSN:2379-6227