Summary: | In this work, an innovative vibration energy harvester is designed by using the point defect effect of two-dimensional (2D) magneto-elastic phononic crystals (PCs) and the piezoelectric effect of piezoelectric material. A point defect is formed by removing the central Tenfenol-D rod to confine and enhance vibration energy into a spot, after which the vibration energy is electromechanically converted into electrical energy by attaching a piezoelectric patch into the area of the point defect. Numerical analysis of the point defect can be carried out by the finite element method in combination with the supercell technique. A 3D Zheng-Liu (Z-L) model which accurately describes the magneto-mechanical coupling constitutive behavior of magnetostrictive material is adopted to obtain variable band structures by applied magnetic field and pre-stress along the z direction. The piezoelectric material is utilized to predict the output voltage and power based on the capacity to convert vibration energy into electrical energy. For the proposed tunable vibration energy harvesting system, numerical results illuminate that band gaps (BGs) and defect bands of the in-plane mixed wave modes (<i>XY</i> modes) can be adjusted to a great extent by applied magnetic field and pre-stress, and thus a much larger range of vibration frequency and more broad-distributed energy can be obtained. The defect bands in the anti-plane wave mode (<i>Z</i> mode), however, have a slight change with applied magnetic field, which leads to a certain frequency range of energy harvesting. These results can provide guidance for the intelligent control of vibration insulation and the active design of continuous power supply for low power devices in engineering.
|