Presence and Natural Treatment of Organic Micropollutants and their Risks after 100 Years of Incidental Water Reuse in Agricultural Irrigation

The aim of the research was to show the presence of micropollutants contained in the wastewater of Mexico City within the distribution canals of the Mezquital Valley (MV), as well as their retention in agricultural soil and aquifers. This system constitutes the world’s oldest and largest e...

Full description

Bibliographic Details
Main Authors: Alma C. Chávez-Mejía, Inés Navarro-González, Rafael Magaña-López, Dafne Uscanga-Roldán, Paloma I. Zaragoza-Sánchez, Blanca Elena Jiménez-Cisneros
Format: Article
Language:English
Published: MDPI AG 2019-10-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/11/10/2148
Description
Summary:The aim of the research was to show the presence of micropollutants contained in the wastewater of Mexico City within the distribution canals of the Mezquital Valley (MV), as well as their retention in agricultural soil and aquifers. This system constitutes the world’s oldest and largest example of the use of untreated wastewater for agricultural irrigation. The artificial recharge associated with the MV aquifers, with groundwater extracted for human consumption showing its importance as a water resource for Mexico City. The results of sampling show the presence of 18 compounds, with 10 of these considered as endocrine disruptor compounds (EDCs). The concentration of these pollutants ranged from 2 ng/L for 17 β-estradiol to 99 ng/L for DEHP, with these values decreasing throughout the course of the canals due to the wastewater dilution factor, their retention in agricultural soil, and their accumulation in the local aquifer. The main mechanisms involved in natural attenuation are adsorption, filtration, and biodegradation. Drinking water equivalent levels (DWELs) were estimated for 11 compounds with regard to acceptable daily intakes (ADIs), by assuming local exposure parameters for a rural Mexican population. These were compared with the maximum groundwater concentrations (Cgw) to screen the potential risks. The very low ratios of Cgw to DWELs indicate no appreciable human health risk from the presence of trace concentrations of these compounds in the source of drinking water in the MV. Despite this, far from being exceeded after more than 100 years of irrigation with residual water, the natural soil attenuation seems to remain stable.
ISSN:2073-4441