A High-Sensitivity Methane Sensor with Localized Surface Plasmon Resonance Behavior in an Improved Hexagonal Gold Nanoring Array

This paper proposes a methane sensor based on localized surface plasmon resonance (LSPR) of a hexagonal periodic gold nanoring array. The effects of structural parameters on the extinction spectrum and refractive index (RI) sensitivity are analyzed to obtain optimal parameters. In particular, the RI...

Full description

Bibliographic Details
Main Authors: Hai Liu, Cong Chen, Yanzeng Zhang, Bingbing Bai, Shoufeng Tang
Format: Article
Language:English
Published: MDPI AG 2019-11-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/19/21/4803
Description
Summary:This paper proposes a methane sensor based on localized surface plasmon resonance (LSPR) of a hexagonal periodic gold nanoring array. The effects of structural parameters on the extinction spectrum and refractive index (RI) sensitivity are analyzed to obtain optimal parameters. In particular, the RI sensitivity can reach 550.08 nm/RIU through improvement of the sensor structure, which is an increase of 17.4% over the original value. After coating a methane-sensitive membrane on the inner and outer surfaces of the gold rings, the methane concentration can be accurately measured with a gas sensitivity of −1.02 nm/%. The proposed method is also applicable to quantitative analyses of components concentration and qualitative analyses of gas composition.
ISSN:1424-8220