Numerical simulation of the motion of a micropolar Casson fluid through a porous medium over a stretching surface

The present study examines the motion of a micropolar non-Newtonian Casson fluid through a porous medium over a stretching surface. The system is pervaded by an external uniform magnetic field. The heat transfer and heat generation are taken into consideration. The problem is modulated mathematicall...

Full description

Bibliographic Details
Main Authors: El-Dabe Nabil T., Moatimid Galal M., Elshekhipy Abd-Elhafez A., Aballah Naglaa F.
Format: Article
Language:English
Published: VINCA Institute of Nuclear Sciences 2020-01-01
Series:Thermal Science
Subjects:
Online Access:http://www.doiserbia.nb.rs/img/doi/0354-9836/2020/0354-98361900008E.pdf
Description
Summary:The present study examines the motion of a micropolar non-Newtonian Casson fluid through a porous medium over a stretching surface. The system is pervaded by an external uniform magnetic field. The heat transfer and heat generation are taken into consideration. The problem is modulated mathematically by a system of non-linear PDE which describe the equations of continuity, momentum, and energy. Suitable similarity solutions are utilized to transform the system of equation ordinary non-linear differential equations. In accordance with the appropriate boundary conditions, are numerically solved by means of the finite difference technique. Also, the system is solved by using multistep differential transform method. The effects of the various physical parameters, of the problem at hand, are illustrated through a set of diagrams.
ISSN:0354-9836