Context-aware seeds for read mapping

Abstract Motivation Most modern seed-and-extend NGS read mappers employ a seeding scheme that requires extracting t non-overlapping seeds in each read in order to find all valid mappings under an edit distance threshold of t. As t grows, this seeding scheme forces mappers to use more and shorter see...

Full description

Bibliographic Details
Main Authors: Hongyi Xin, Mingfu Shao, Carl Kingsford
Format: Article
Language:English
Published: BMC 2020-05-01
Series:Algorithms for Molecular Biology
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13015-020-00172-3
Description
Summary:Abstract Motivation Most modern seed-and-extend NGS read mappers employ a seeding scheme that requires extracting t non-overlapping seeds in each read in order to find all valid mappings under an edit distance threshold of t. As t grows, this seeding scheme forces mappers to use more and shorter seeds, which increases the seed hits (seed frequencies) and therefore reduces the efficiency of mappers. Results We propose a novel seeding framework, context-aware seeds (CAS). CAS guarantees finding all valid mappings but uses fewer (and longer) seeds, which reduces seed frequencies and increases efficiency of mappers. CAS achieves this improvement by attaching a confidence radius to each seed in the reference. We prove that all valid mappings can be found if the sum of confidence radii of seeds are greater than t. CAS generalizes the existing pigeonhole-principle-based seeding scheme in which this confidence radius is implicitly always 1. Moreover, we design an efficient algorithm that constructs the confidence radius database in linear time. We experiment CAS with E. coli genome and show that CAS significantly reduces seed frequencies when compared with the state-of-the-art pigeonhole-principle-based seeding algorithm, the Optimal Seed Solver. Availability https://github.com/Kingsford-Group/CAS_code
ISSN:1748-7188