A high performance, low power computational platform for complex sensing operations in smart cities

This paper presents a new wireless platform designed for an integrated traffic/flash flood monitoring system. The sensor platform is built around a 32-bit ARM Cortex M4 microcontroller and a 2.4 GHz 802.15.4 ISM compliant radio module. It can be interfaced with fixed traffic sensors, or receive data...

Full description

Bibliographic Details
Main Authors: Jiming Jiang, Christian Claudel
Format: Article
Language:English
Published: Elsevier 2017-04-01
Series:HardwareX
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2468067216300177
Description
Summary:This paper presents a new wireless platform designed for an integrated traffic/flash flood monitoring system. The sensor platform is built around a 32-bit ARM Cortex M4 microcontroller and a 2.4 GHz 802.15.4 ISM compliant radio module. It can be interfaced with fixed traffic sensors, or receive data from vehicle transponders. This platform is specifically designed for solar-powered, low bandwidth, high computational performance wireless sensor network applications. A self-recovering unit is designed to increase reliability and allow periodic hard resets, an essential requirement for sensor networks. A radio monitoring circuitry is proposed to monitor incoming and outgoing transmissions, simplifying software debugging. We illustrate the performance of this wireless sensor platform on complex problems arising in smart cities, such as traffic flow monitoring, machine-learning-based flash flood monitoring or Kalman-filter based vehicle trajectory estimation. All design files have been uploaded and shared in an open science framework, and can be accessed from https://osf.io/fuyqd/. The hardware design is under CERN Open Hardware License v1.2.
ISSN:2468-0672