Non-linear finite element analysis of reinforced concrete members and punching shear strength of HSC slabs

A rational three-dimensional nonlinear finite element model (NLFEAS) is used for evaluating the behavior of high strength concrete slabs under monotonic transverse load. The non-linear equations of equilibrium have been solved using the incremental-iterative technique based on the modified Newton-Ra...

Full description

Bibliographic Details
Main Authors: Nassim Kernou, Khalil Belakhdar, Bekaddour Benyamina Abdelrahmane
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201714902056
Description
Summary:A rational three-dimensional nonlinear finite element model (NLFEAS) is used for evaluating the behavior of high strength concrete slabs under monotonic transverse load. The non-linear equations of equilibrium have been solved using the incremental-iterative technique based on the modified Newton-Raphson method. The convergence of the solution was controlled by a load convergence criterion. The validity of the theoretical formulations and the program used was verified, through comparison with results obtained using ANSYS program and with available experimental test results. A parametric study was conducted to investigate the effect of different parameters on the behavior of slabs which was evaluated in terms of loaddeflection characteristics, concrete and steel stresses and strains, and failure mechanisms. Also, punching shear resistance of slabs was numerically evaluated and compared with the prediction specified by some design codes.
ISSN:2261-236X