Kinetic Modeling of C3H6 Inhibition on NO Oxidation over Pt Catalyst

Exhaust after treatment for lean burn and diesel engine is a complex catalytic system that consists of a number of catalytic units. Pt/Al2O3 is often used as a model Diesel Oxidation Catalyst (DOC) that plays an important role to facilitate oxidation of NO to NO2. In the present study, we proposed a...

Full description

Bibliographic Details
Main Authors: Muhammad Mufti Azis, Derek Creaser
Format: Article
Language:English
Published: Diponegoro University 2016-04-01
Series:Bulletin of Chemical Reaction Engineering & Catalysis
Subjects:
Online Access:https://ejournal2.undip.ac.id/index.php/bcrec/article/view/412
Description
Summary:Exhaust after treatment for lean burn and diesel engine is a complex catalytic system that consists of a number of catalytic units. Pt/Al2O3 is often used as a model Diesel Oxidation Catalyst (DOC) that plays an important role to facilitate oxidation of NO to NO2. In the present study, we proposed a detailed kinetic model of NO oxidation as well as low temperature C3H6 inhibition to simulate temperature-programmed reaction (TPR) data for NO oxidation over Pt/Al2O3. A steady-state microkinetic model based on Langmuir-Hinshelwood mechanism for NO oxidation was proposed. In addition, low temperature C3H6 inhibition was proposed as a result of site blocking as well as surface nitrite consumption. The model can explain the experimental data well over the studied temperature range. Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th November 2015; Revised: 1st February 2016; Accepted: 1st February 2016 How to Cite: Azis, M.M., Creaser, D. (2016). Kinetic Modeling of C3H6 Inhibition on NO Oxidation over Pt Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1): 27-33. (doi:10.9767/bcrec.11.1.412.27-33) Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.412.27-33 Article Metrics: (click on the button below to see citations in Scopus)
ISSN:1978-2993