Contextual fear memory modulates PSD95 phosphorylation, AMPAr subunits, PKMζ and PI3K differentially between adult and juvenile rats

It is well known that young organisms do not maintain memories as long as adults, but the mechanisms for this ontogenetic difference are undetermined. Previous work has revealed that the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAr) subunits are trafficked into the synaptic m...

Full description

Bibliographic Details
Main Authors: Roseanna M. Zanca, Shirley Sanay, Jorge A. Avila, Edgar Rodriguez, Harry N. Shair, Peter A. Serrano
Format: Article
Language:English
Published: Elsevier 2019-02-01
Series:Neurobiology of Stress
Online Access:http://www.sciencedirect.com/science/article/pii/S2352289518300687
Description
Summary:It is well known that young organisms do not maintain memories as long as adults, but the mechanisms for this ontogenetic difference are undetermined. Previous work has revealed that the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAr) subunits are trafficked into the synaptic membrane following memory retrieval in adults. Additionally, phosphorylated PSD-95-pS295 promotes AMPAr stabilization at the synapse. We investigated these plasticity related proteins as potential mediators in the differential contextual stress memory retrieval capabilities observed between adult and juvenile rats. Rats were assigned to either pedestal stress (1 h) or no stress control (home cage). Each animal was placed alone in an open field for 5 min at the base of a 6 × 6 sq inch pedestal (4ft high). Stress subjects were then placed on this pedestal for 1hr and control subjects were placed in their home cage following initial exploration. Each animal was returned to the open field for 5 min either 1d or 7d following initial exposure. Freezing postures were quantified during the memory retrieval test. The 1d test shows adult (P90) and juvenile (P26) stressed rats increase their freezing time compared to controls. However, the 7d memory retrieval test shows P90 stress rats but not P26 stress rats freeze while in the fear context. Twenty minutes after the memory retrieval test, hippocampi and amygdala were micro-dissected and prepared for western blot analysis. Our results show that 1d fear memory retrieval induced an upregulation of PSD-95 and pS295 in the adult amygdala but not in the juvenile. However, the juvenile animals upregulated PKMζ, PI3K and GluA2/3, GluA1-S845 in the dorsal hippocampus (DH), but the adults did not. Following the 7d memory retrieval test, adults upregulated GluA2 in the amygdala but not the juveniles. In the DH, adults increased PSD-95 and pS295 but not the juveniles. The adults appear to preferentially increase amygdala-driven processing at 1d and increase DH-driven context specific processing at 7d. These data identify molecular processes that may underlie the reduced fear-memory retrieval capability of juveniles. Together these data provide a potential molecular target that could be beneficial in treatment of anxiety disorders and PTSD. Keywords: Stress, Fear, Memory, Amygdala, Hippocampus, Plasticity, AMPA receptor, PSD-95, Development
ISSN:2352-2895