A semiempirical error estimation technique for PWV derived from atmospheric radiosonde data
A semiempirical method for estimating the error and optimum number of sampled levels in precipitable water vapour (PWV) determinations from atmospheric radiosoundings is proposed. Two terms have been considered: the uncertainties in the measurements and the sampling error. Also, the uncertainty has...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2016-09-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | http://www.atmos-meas-tech.net/9/4759/2016/amt-9-4759-2016.pdf |
Summary: | A semiempirical method for estimating the error and optimum number of sampled
levels in precipitable water vapour (PWV) determinations from atmospheric
radiosoundings is proposed. Two terms have been considered: the uncertainties
in the measurements and the sampling error. Also, the uncertainty has been
separated in the variance and covariance components. The sampling and
covariance components have been modelled from an empirical dataset of 205
high-vertical-resolution radiosounding profiles, equipped with Vaisala RS80
and RS92 sondes at four different locations: Güímar (GUI) in Tenerife, at
sea level, and the astronomical observatory at Roque de los Muchachos (ORM,
2300 m a.s.l.) on La Palma (both on the Canary Islands, Spain), Lindenberg
(LIN) in continental Germany, and Ny-Ålesund (NYA) in the Svalbard
Islands, within the Arctic Circle. The balloons at the ORM were launched
during intensive and unique site-testing runs carried out in 1990 and 1995,
while the data for the other sites were obtained from radiosounding stations
operating for a period of 1 year (2013–2014). The PWV values ranged
between ∼ 0.9 and ∼ 41 mm. The method sub-samples the profile for error minimization. The result is the minimum error and the optimum number of levels.
<br><br>
The results obtained in the four sites studied showed that the ORM is the
driest of the four locations and the one with the fastest vertical decay of
PWV. The exponential autocorrelation pressure lags ranged from 175 hPa (ORM)
to 500 hPa (LIN). The results show a coherent behaviour with no biases as a function of the profile. The final error is roughly proportional to PWV whereas the optimum number of levels (<i>N</i><sub>0</sub>) is the reverse.
The value of <i>N</i><sub>0</sub> is less than 400 for 77 % of the profiles and the absolute errors are always < 0.6 mm. The median relative error is
2.0 ± 0.7 % and the 90th percentile <i>P</i><sub>90</sub> = 4.6 %. Therefore, whereas a radiosounding samples at least <i>N</i><sub>0</sub> uniform vertical levels, depending on the water vapour content and distribution of the atmosphere, the error in the PWV estimate is likely to stay below ≈ 3 %, even for dry conditions. |
---|---|
ISSN: | 1867-1381 1867-8548 |