Route Planning for Agricultural Machines with Multiple Depots: Manure Application Case Study
Capacitated field operations involve input/output material flows where there are capacity constraints in the form of a specific load that a vehicle can carry. As such, a specific normal-sized field cannot be covered in one single operation using only one load, and the vehicle needs to get serviced (...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-10-01
|
Series: | Agronomy |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4395/10/10/1608 |
id |
doaj-77eca4c7d45f4430bcc197a7d3efeff8 |
---|---|
record_format |
Article |
spelling |
doaj-77eca4c7d45f4430bcc197a7d3efeff82021-04-02T13:23:07ZengMDPI AGAgronomy2073-43952020-10-01101608160810.3390/agronomy10101608Route Planning for Agricultural Machines with Multiple Depots: Manure Application Case StudyMahdi Vahdanjoo0Kun Zhou1Claus Aage Grøn Sørensen2Department of Engineering, Faculty of Technical Sciences, Aarhus University, Finlandsgade 22, 8200 Aarhus N, DenmarkResearch & Advanced Engineering, AGCO A/S, 8930 Randers, DenmarkDepartment of Engineering, Faculty of Technical Sciences, Aarhus University, Finlandsgade 22, 8200 Aarhus N, DenmarkCapacitated field operations involve input/output material flows where there are capacity constraints in the form of a specific load that a vehicle can carry. As such, a specific normal-sized field cannot be covered in one single operation using only one load, and the vehicle needs to get serviced (i.e., refilling) from out-of-field facilities (depot). Although several algorithms have been developed to solve the routing problem of capacitated operations, these algorithms only considered one depot. The general goal of this paper is to develop a route planning tool for agricultural machines with multiple depots. The tool presented consists of two modules: the first one regards the field geometrical representation in which the field is partitioned into tracks and headland passes; the second one regards route optimization that is implemented by the metaheuristic simulated annealing (SA) algorithm. In order to validate the developed tool, a comparison between a well-known route planning approach, namely B-pattern, and the algorithm presented in this study was carried out. The results show that the proposed algorithm outperforms the B-pattern by up to 20.0% in terms of traveled nonworking distance. The applicability of the tool developed was tested in a case study with seven scenarios differing in terms of locations and number of depots. The results of this study illustrated that the location and number of depots significantly affect the total nonworking traversal distance during a field operation.https://www.mdpi.com/2073-4395/10/10/1608operations managementoptimizationroute planningfield efficiencymultiple depotssimulated annealing |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mahdi Vahdanjoo Kun Zhou Claus Aage Grøn Sørensen |
spellingShingle |
Mahdi Vahdanjoo Kun Zhou Claus Aage Grøn Sørensen Route Planning for Agricultural Machines with Multiple Depots: Manure Application Case Study Agronomy operations management optimization route planning field efficiency multiple depots simulated annealing |
author_facet |
Mahdi Vahdanjoo Kun Zhou Claus Aage Grøn Sørensen |
author_sort |
Mahdi Vahdanjoo |
title |
Route Planning for Agricultural Machines with Multiple Depots: Manure Application Case Study |
title_short |
Route Planning for Agricultural Machines with Multiple Depots: Manure Application Case Study |
title_full |
Route Planning for Agricultural Machines with Multiple Depots: Manure Application Case Study |
title_fullStr |
Route Planning for Agricultural Machines with Multiple Depots: Manure Application Case Study |
title_full_unstemmed |
Route Planning for Agricultural Machines with Multiple Depots: Manure Application Case Study |
title_sort |
route planning for agricultural machines with multiple depots: manure application case study |
publisher |
MDPI AG |
series |
Agronomy |
issn |
2073-4395 |
publishDate |
2020-10-01 |
description |
Capacitated field operations involve input/output material flows where there are capacity constraints in the form of a specific load that a vehicle can carry. As such, a specific normal-sized field cannot be covered in one single operation using only one load, and the vehicle needs to get serviced (i.e., refilling) from out-of-field facilities (depot). Although several algorithms have been developed to solve the routing problem of capacitated operations, these algorithms only considered one depot. The general goal of this paper is to develop a route planning tool for agricultural machines with multiple depots. The tool presented consists of two modules: the first one regards the field geometrical representation in which the field is partitioned into tracks and headland passes; the second one regards route optimization that is implemented by the metaheuristic simulated annealing (SA) algorithm. In order to validate the developed tool, a comparison between a well-known route planning approach, namely B-pattern, and the algorithm presented in this study was carried out. The results show that the proposed algorithm outperforms the B-pattern by up to 20.0% in terms of traveled nonworking distance. The applicability of the tool developed was tested in a case study with seven scenarios differing in terms of locations and number of depots. The results of this study illustrated that the location and number of depots significantly affect the total nonworking traversal distance during a field operation. |
topic |
operations management optimization route planning field efficiency multiple depots simulated annealing |
url |
https://www.mdpi.com/2073-4395/10/10/1608 |
work_keys_str_mv |
AT mahdivahdanjoo routeplanningforagriculturalmachineswithmultipledepotsmanureapplicationcasestudy AT kunzhou routeplanningforagriculturalmachineswithmultipledepotsmanureapplicationcasestudy AT clausaagegrønsørensen routeplanningforagriculturalmachineswithmultipledepotsmanureapplicationcasestudy |
_version_ |
1721565265579212800 |