Carbon credit accounting: the model CO2FIX v. 3.1 applied to a beech stand under Forest Management in southern Italy

Forests play an important role in the mitigation of the effects of climate change thanks to their ability to sequestrate carbon dioxide from atmosphere. The assessment of the carbon fixed by forest ecosystems (stocks) and the carbon accumulated over a period of time (sinks) is focal for environmenta...

Full description

Bibliographic Details
Main Authors: Scarfò F, Mercurio R
Format: Article
Language:Italian
Published: Italian Society of Silviculture and Forest Ecology (SISEF) 2009-06-01
Series:Forest@
Subjects:
Online Access:http://www.sisef.it/forest@/show.php?id=587&lang=en
Description
Summary:Forests play an important role in the mitigation of the effects of climate change thanks to their ability to sequestrate carbon dioxide from atmosphere. The assessment of the carbon fixed by forest ecosystems (stocks) and the carbon accumulated over a period of time (sinks) is focal for environmental protection scopes, as well as for accessing the carbon credits market. The main purpose of this work was to estimate (using the ecosystem-level model CO2FIX v. 3.1) the equivalent carbon dioxide (Mg CO2 eq ha-1 y-1) fixed by a beech stand located in southern Italy during the First Commitment Period (2008-2012) under Forest Management (art. 3.4 of the Kyoto Protocol). The model was applied over a forest district using local data obtained from both literature and field analysis. Over the simulated period, sink values of 9.77 Mg C ha-1 (1.95 ± 0.91 Mg C ha-1 y-1 on average) were obtained, corresponding to an accountable value of 5.36 Mg CO2 eq ha-1 and according to the possibility to accredit only the 15% of the real value (Decision 16/CMP.1 UNFCCC). Sink values estimated with the model applied barely diverge from those obtained by similar studies on beech forests, that have been briefly reviewed and discussed here.
ISSN:1824-0119