In vitro evaluation of new 4-thiazolidinones on invasion and growth of Toxoplasma gondii

Treatments for toxoplasmosis such as pyrimethamine have shown numerous side effects. It has been reported that the likelihood of relapse associated with pyrimethamine-based therapy in patients with HIV and toxoplasmic encephalitis (TE) can have significant implications, even for patients who often d...

Full description

Bibliographic Details
Main Authors: Diego A. Molina, Gerardo A. Ramos, Alejandro Zamora-Vélez, Gina M. Gallego-López, Cristian Rocha-Roa, Jorge Enrique Gómez-Marin, Edwar Cortes
Format: Article
Language:English
Published: Elsevier 2021-08-01
Series:International Journal for Parasitology: Drugs and Drug Resistance
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211320721000233
Description
Summary:Treatments for toxoplasmosis such as pyrimethamine have shown numerous side effects. It has been reported that the likelihood of relapse associated with pyrimethamine-based therapy in patients with HIV and toxoplasmic encephalitis (TE) can have significant implications, even for patients who often develop new lesions in areas of the brain previously free of infection. This led us to research for new agents against Toxoplasma gondii. Recent findings have shown the potent biological activity of 4-thiazolidinones. We proposed to design and synthesize a new series of 2-hydrazono-4-thiazolidinones derivatives to evaluate the in vitro growth inhibition effect on T. gondii. The growth rates of T. gondii tachyzoites in Human Foreskin Fibroblast (HFF) cell culture were identified by two in vitro methodologies. The first one was by fluorescence in which green fluorescent RH parasites and cherry-red fluorescent ME49 parasites were used. The second one was a colorimetric methodology using β-Gal parasites of the RH strain constitutively expressing the enzyme beta-galactosidase. The 4-thiazolidinone derivatives 1B, 2B and 3B showed growth inhibition at the same level of Pyrimethamine. These compounds showed IC50 values of 1B (0.468–0.952 μM), 2B (0.204–0.349 μM) and 3B (0.661–1.015 μM) against T. gondii. As a measure of cytotoxicity the compounds showed a TD50 values of: 1B (60 μM), 2B (206 μM) and 3B (125 μM). The in vitro assays and molecular modeling results suggest that these compounds could act as possible inhibitors of the Calcium-Dependent Protein Kinase 1 of T. gondii. Further, our results support the fact that of combining appropriate detection technologies, combinatorial chemistry and computational biology is a good strategy for efficient drug discovery. These compounds merit in vivo analysis for anti-parasitic drug detection.
ISSN:2211-3207