Summary: | Skin-derived precursors (SKPs) from dermis possess the capacities of self-renewal and multipotency. In vitro and in vivo studies demonstrated that they can differentiate into fibroblasts. However, little is known about the molecular mechanism of the differentiation of SKPs into fibroblasts. Here we compare the transcriptomes of mouse SKPs and SKP-derived fibroblasts (SFBs) by RNA-Seq analysis, trying to find differences in gene expression between the two kinds of cells and then elucidate the candidate genes that may play important roles in the differentiation of SKPs into fibroblasts. A total of 1971 differentially expressed genes (DEGs) were identified by RNA-Seq, which provided abundant data for further analysis. Gene Ontology enrichment analysis revealed that genes related to cell differentiation, cell proliferation, protein binding, transporter activity and membrane were significantly enriched. The most significantly up-regulated genes Wnt4, Wisp2 and Tsp-1 and down-regulated genes Slitrk1, Klk6, Agtr2, Ivl, Msx1, IL15, Atp6v0d2, Kcne1l and Thbs4 may play important roles in the differentiation of SKPs into fibroblasts. KEGG analysis showed that DEGs were significantly enriched in the TGF-β signaling pathway, Wnt signaling pathway and Notch signaling pathway, which have been previously proven to regulate the differentiation and self-renewal of various stem cells. These identified DEGs and pathways could facilitate further investigations of the detailed molecular mechanisms, making it possible to take advantage of the potential therapeutic applications of SKPs in skin regeneration in the future.
|