Impact of electrode geometry on force generation during functional electrical stimulation

The goal of functional electrical stimulation is to restore lost movements by excitation of motor axons inner-vating the target muscle. For optimal electrode placement and geometry the distribution and spatial orientation of the desired motor axons has to be known. In this study, the response of mot...

Full description

Bibliographic Details
Main Authors: Loitz Jan C., Reinert Aljoscha, Schroeder Dietmar, Krautschneider Wolfgang H.
Format: Article
Language:English
Published: De Gruyter 2015-09-01
Series:Current Directions in Biomedical Engineering
Subjects:
Online Access:https://doi.org/10.1515/cdbme-2015-0110
Description
Summary:The goal of functional electrical stimulation is to restore lost movements by excitation of motor axons inner-vating the target muscle. For optimal electrode placement and geometry the distribution and spatial orientation of the desired motor axons has to be known. In this study, the response of motor axons with different orientations to electrical stimulation was simulated. Three electrode geometries with the same area were used. The simulated axon activation was compared to experimental force measurements and showed good agreements. It is now assumed that optimal electrode geometry does strongly depend on motor axon orientation, which can vary from one subject to the other. Lack of knowledge about the dominant motor axon orientation makes the use of square, round or multi-pad electrodes favorable.
ISSN:2364-5504