Summary: | Georgia Kastrinaki,1,* Christos Samsouris,2,* Efstratios K Kosmidis,3 Eleni Papaioannou,1 Athanasios G Konstandopoulos,1,4 George Theophilidis2 1Aerosol and Particle Technology Laboratory (APTL), CERTH/CPERI, Thessaloniki, Greece; 2Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece; 3Laboratory of Physiology, Department of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece; 4Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece *These authors contributed equally to this work Abstract: The axonal translocation of two commonly used nanoparticles in medicine, namely CeO2 and SiO2, is investigated. The study was conducted on frog sciatic nerve fibers in an ex vivo preparation. Nanoparticles were applied at the proximal end of the excised nerve. A nerve stimulation protocol was followed for over 35 hours. Nerve vitality curve comparison between control and exposed nerves showed that CeO2 has no neurotoxic effect at the concentrations tested. After exposure, specimens were fixed and then screen scanned every 1 mm along their length for nanoparticle presence by means of Fourier transform infrared microscopy. We demonstrated that both nanoparticles translocate within the nerve by formation of narrow bands in the Fourier transform infrared spectrum. For the CeO2, we also demonstrated that the translocation depends on both axonal integrity and electrical activity. The speed of translocation for the two species was estimated in the range of 0.45–0.58 mm/h, close to slow axonal transportation rate. Transmission electron microscopy provided direct evidence for the presence of SiO2 in the treated nerves. Keywords: CeO2, SiO2, FTIR, nanoparticles, ex vivo electrophysiology, frog sciatic nerve, translocation
|