Dynamic Stability of a Circular Pre-Stressed Elastic Orthotropic Plate Subjected to Shock Excitation
The problem on low-velocity impact of an elastic body upon a pre-stressed circular orthotropic plate possessing cylindrical anisotropy is considered. The dynamic behavior of the plate is described by equations taking the rotary inertia and transverse shear deformations into account. Longitudinal com...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2006-01-01
|
Series: | Shock and Vibration |
Online Access: | http://dx.doi.org/10.1155/2006/142832 |
Summary: | The problem on low-velocity impact of an elastic body upon a pre-stressed circular orthotropic plate possessing cylindrical anisotropy is considered. The dynamic behavior of the plate is described by equations taking the rotary inertia and transverse shear deformations into account. Longitudinal compressing forces are uniformly distributed along the plate’s median plane. Contact interaction is modeled by a linear spring, and a force arising in it is the linear approximation of Herts’z contact force. During the shock interaction of the impactor with the plate, the waves which are the surfaces of strong discontinuity are generated in the plate and begin to propagate. Behind the fronts of these waves, the solution is constructed in terms of ray series, which coefficients are the different order discontinuities in partial time-derivatives of the desired functions, and a variable is the time elapsed after the wave arrival at the plate’s point under consideration. The ray series coefficients are determined from recurrent equations within accuracy of arbitrary constants, which are then determined from the conditions of dynamic contact interaction of the impactor with the target. The found arbitrary constants allow one to construct the solution both within and out of the contact region. The analysis of the solution obtained enables one to find out the new effect and to make the inference that under a certain critical magnitude of the compression force the orthotropic plate goes over into the critical state, what is characterized by ‘locking’ the shear wave within the contact region, resulting in plate damage within this zone as soon as the compression force exceeds its critical value. |
---|---|
ISSN: | 1070-9622 1875-9203 |