<inline-formula> <graphic file="1029-242X-2010-124018-i1.gif"/></inline-formula>-Harmonic Equations and the Dirac Operator
<p/> <p>We show how <inline-formula> <graphic file="1029-242X-2010-124018-i2.gif"/></inline-formula>-harmonic equations arise as components of Dirac systems. We generalize <inline-formula> <graphic file="1029-242X-2010-124018-i3.gif"/><...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | Journal of Inequalities and Applications |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/2010/124018 |
id |
doaj-7778fcdced144399be1e51357bd0746f |
---|---|
record_format |
Article |
spelling |
doaj-7778fcdced144399be1e51357bd0746f2020-11-24T21:10:43ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2010-01-0120101124018<inline-formula> <graphic file="1029-242X-2010-124018-i1.gif"/></inline-formula>-Harmonic Equations and the Dirac OperatorNolder CraigA<p/> <p>We show how <inline-formula> <graphic file="1029-242X-2010-124018-i2.gif"/></inline-formula>-harmonic equations arise as components of Dirac systems. We generalize <inline-formula> <graphic file="1029-242X-2010-124018-i3.gif"/></inline-formula>-harmonic equations to <inline-formula> <graphic file="1029-242X-2010-124018-i4.gif"/></inline-formula>-Dirac equations. Removability theorems are proved for solutions to <inline-formula> <graphic file="1029-242X-2010-124018-i5.gif"/></inline-formula>-Dirac equations.</p>http://www.journalofinequalitiesandapplications.com/content/2010/124018 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Nolder CraigA |
spellingShingle |
Nolder CraigA <inline-formula> <graphic file="1029-242X-2010-124018-i1.gif"/></inline-formula>-Harmonic Equations and the Dirac Operator Journal of Inequalities and Applications |
author_facet |
Nolder CraigA |
author_sort |
Nolder CraigA |
title |
<inline-formula> <graphic file="1029-242X-2010-124018-i1.gif"/></inline-formula>-Harmonic Equations and the Dirac Operator |
title_short |
<inline-formula> <graphic file="1029-242X-2010-124018-i1.gif"/></inline-formula>-Harmonic Equations and the Dirac Operator |
title_full |
<inline-formula> <graphic file="1029-242X-2010-124018-i1.gif"/></inline-formula>-Harmonic Equations and the Dirac Operator |
title_fullStr |
<inline-formula> <graphic file="1029-242X-2010-124018-i1.gif"/></inline-formula>-Harmonic Equations and the Dirac Operator |
title_full_unstemmed |
<inline-formula> <graphic file="1029-242X-2010-124018-i1.gif"/></inline-formula>-Harmonic Equations and the Dirac Operator |
title_sort |
<inline-formula> <graphic file="1029-242x-2010-124018-i1.gif"/></inline-formula>-harmonic equations and the dirac operator |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1025-5834 1029-242X |
publishDate |
2010-01-01 |
description |
<p/> <p>We show how <inline-formula> <graphic file="1029-242X-2010-124018-i2.gif"/></inline-formula>-harmonic equations arise as components of Dirac systems. We generalize <inline-formula> <graphic file="1029-242X-2010-124018-i3.gif"/></inline-formula>-harmonic equations to <inline-formula> <graphic file="1029-242X-2010-124018-i4.gif"/></inline-formula>-Dirac equations. Removability theorems are proved for solutions to <inline-formula> <graphic file="1029-242X-2010-124018-i5.gif"/></inline-formula>-Dirac equations.</p> |
url |
http://www.journalofinequalitiesandapplications.com/content/2010/124018 |
work_keys_str_mv |
AT noldercraiga inlineformulagraphicfile1029242x2010124018i1gifinlineformulaharmonicequationsandthediracoperator |
_version_ |
1716755588261609472 |