CO2 Storage Properties of Nanostructured Carbons by a Microwave Plasma Reactor
Nanostructured carbon was successfully produced by methane cracking in a relatively low-energy cold plasma reactor designed in-house. A followed thermal treatment was carried out to further enhance its porosity. The modified plasma carbon was then employed for CO2 adsorption at 25°C. The as-synthesi...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2015-01-01
|
Series: | Journal of Nanomaterials |
Online Access: | http://dx.doi.org/10.1155/2015/650682 |
id |
doaj-775364d552b2454ca2f53e2da9831a96 |
---|---|
record_format |
Article |
spelling |
doaj-775364d552b2454ca2f53e2da9831a962020-11-24T22:07:26ZengHindawi LimitedJournal of Nanomaterials1687-41101687-41292015-01-01201510.1155/2015/650682650682CO2 Storage Properties of Nanostructured Carbons by a Microwave Plasma ReactorMi Tian0Congxiao Shang1School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UKSchool of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UKNanostructured carbon was successfully produced by methane cracking in a relatively low-energy cold plasma reactor designed in-house. A followed thermal treatment was carried out to further enhance its porosity. The modified plasma carbon was then employed for CO2 adsorption at 25°C. The as-synthesized plasma carbon and the modified carbon were characterized by BET surface area/pore size analyzer, Raman spectra, and transmission electron microscopy (TEM). The results show thermal modification pronouncedly improves BET surface area and porosity of PC due to opening up of accessible micro-/mesopores in the graphitic structure and by the removal of amorphous carbons around the graphite surface. The modified PC displays a higher adsorption capacity at 25°C than that of the commercial activated carbon reported. The low hydrogen storage capacity of the modified PC indicates that it can be considered for CO2 removal in syngas.http://dx.doi.org/10.1155/2015/650682 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mi Tian Congxiao Shang |
spellingShingle |
Mi Tian Congxiao Shang CO2 Storage Properties of Nanostructured Carbons by a Microwave Plasma Reactor Journal of Nanomaterials |
author_facet |
Mi Tian Congxiao Shang |
author_sort |
Mi Tian |
title |
CO2 Storage Properties of Nanostructured Carbons by a Microwave Plasma Reactor |
title_short |
CO2 Storage Properties of Nanostructured Carbons by a Microwave Plasma Reactor |
title_full |
CO2 Storage Properties of Nanostructured Carbons by a Microwave Plasma Reactor |
title_fullStr |
CO2 Storage Properties of Nanostructured Carbons by a Microwave Plasma Reactor |
title_full_unstemmed |
CO2 Storage Properties of Nanostructured Carbons by a Microwave Plasma Reactor |
title_sort |
co2 storage properties of nanostructured carbons by a microwave plasma reactor |
publisher |
Hindawi Limited |
series |
Journal of Nanomaterials |
issn |
1687-4110 1687-4129 |
publishDate |
2015-01-01 |
description |
Nanostructured carbon was successfully produced by methane cracking in a relatively low-energy cold plasma reactor designed in-house. A followed thermal treatment was carried out to further enhance its porosity. The modified plasma carbon was then employed for CO2 adsorption at 25°C. The as-synthesized plasma carbon and the modified carbon were characterized by BET surface area/pore size analyzer, Raman spectra, and transmission electron microscopy (TEM). The results show thermal modification pronouncedly improves BET surface area and porosity of PC due to opening up of accessible micro-/mesopores in the graphitic structure and by the removal of amorphous carbons around the graphite surface. The modified PC displays a higher adsorption capacity at 25°C than that of the commercial activated carbon reported. The low hydrogen storage capacity of the modified PC indicates that it can be considered for CO2 removal in syngas. |
url |
http://dx.doi.org/10.1155/2015/650682 |
work_keys_str_mv |
AT mitian co2storagepropertiesofnanostructuredcarbonsbyamicrowaveplasmareactor AT congxiaoshang co2storagepropertiesofnanostructuredcarbonsbyamicrowaveplasmareactor |
_version_ |
1725820421590220800 |