Improving ELM-Based Service Quality Prediction by Concise Feature Extraction

Web services often run on highly dynamic and changing environments, which generate huge volumes of data. Thus, it is impractical to monitor the change of every QoS parameter for the timely trigger precaution due to high computational costs associated with the process. To address the problem, this pa...

Full description

Bibliographic Details
Main Authors: Yuhai Zhao, Ying Yin, Gang Sheng, Bin Zhang, Guoren Wang
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2015/325192
Description
Summary:Web services often run on highly dynamic and changing environments, which generate huge volumes of data. Thus, it is impractical to monitor the change of every QoS parameter for the timely trigger precaution due to high computational costs associated with the process. To address the problem, this paper proposes an active service quality prediction method based on extreme learning machine. First, we extract web service trace logs and QoS information from the service log and convert them into feature vectors. Second, by the proposed EC rules, we are enabled to trigger the precaution of QoS as soon as possible with high confidence. An efficient prefix tree based mining algorithm together with some effective pruning rules is developed to mine such rules. Finally, we study how to extract a set of diversified features as the representative of all mined results. The problem is proved to be NP-hard. A greedy algorithm is presented to approximate the optimal solution. Experimental results show that ELM trained by the selected feature subsets can efficiently improve the reliability and the earliness of service quality prediction.
ISSN:1024-123X
1563-5147