Design and Experimental Implementation of a Multi-Cloak Paraxial Optical System

Electromagnetic cloaking has being continuously pursued using a large variety of approaches. In recent years, this effect has been observed using either complex devices based on the so-called Transformation Optics or simple systems based on conventional optics with proper characteristics. In the lat...

Full description

Bibliographic Details
Main Authors: Alicia Fresno-Hernández, Braulio García-Cámara, Juan Carlos Torres, José Manuel Sánchez-Pena
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/8/9/358
Description
Summary:Electromagnetic cloaking has being continuously pursued using a large variety of approaches. In recent years, this effect has been observed using either complex devices based on the so-called Transformation Optics or simple systems based on conventional optics with proper characteristics. In the latter case, a simple arrangement of lenses working in the paraxial regime can provide broadband visible cloaking in a wide area. In this work, we analyzed and generalized this method by proposing a five-lens system producing at least three potential invisible regions with a large cloaked area (>90% of the visual field). In particular, we developed the mathematical formalism and show, both numerically and experimentally, the successful operation of the cloaking system with the naked eye.
ISSN:2304-6732