Perturbative linearization of supersymmetric Yang-Mills theory

Abstract Supersymmetric gauge theories are characterized by the existence of a transformation of the bosonic fields (Nicolai map) such that the Jacobi determinant of the transformation equals the product of the Matthews-Salam-Seiler and Faddeev-Popov determinants. This transformation had been worked...

Full description

Bibliographic Details
Main Authors: Sudarshan Ananth, Olaf Lechtenfeld, Hannes Malcha, Hermann Nicolai, Chetan Pandey, Saurabh Pant
Format: Article
Language:English
Published: SpringerOpen 2020-10-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP10(2020)199
Description
Summary:Abstract Supersymmetric gauge theories are characterized by the existence of a transformation of the bosonic fields (Nicolai map) such that the Jacobi determinant of the transformation equals the product of the Matthews-Salam-Seiler and Faddeev-Popov determinants. This transformation had been worked out to second order in the coupling constant. In this paper, we extend this result (and the framework itself ) to third order in the coupling constant. A diagrammatic approach in terms of tree diagrams, aiming to extend this map to arbitrary orders, is outlined. This formalism bypasses entirely the use of anti-commuting variables, as well as issues concerning the (non-)existence of off-shell formulations for these theories. It thus offers a fresh perspective on supersymmetric gauge theories and, in particular, the ubiquitous N $$ \mathcal{N} $$ = 4 theory.
ISSN:1029-8479