Summary: | <p>Abstract</p> <p>Background</p> <p>Hedgehog (Hh) signaling from the urogenital sinus (UGS) epithelium to the surrounding mesenchyme plays a critical role in regulating ductal formation and growth during prostate development. The primary cilium, a feature of most interphase vertebrate cell types, serves as a required localization domain for Hh signaling transducing proteins.</p> <p>Results</p> <p>Immunostaining revealed the presence of primary cilia in mesenchymal cells of the developing prostate. Cell-based assays of a urongenital sinus mesenchymal cell line (UGSM-2) revealed that proliferation-limiting (serum starvation and/or confluence) growth conditions promoted cilia formation and correlated with pathway activation associated with accumulation of Smoothened in primary cilia. The prostate cancer cell lines PC-3, LNCaP, and 22RV1, previously shown to lack demonstrable autocrine Hh signaling capacity, did not exhibit primary cilia even under proliferation-limiting growth conditions.</p> <p>Conclusion</p> <p>We conclude that paracrine Hedgehog signaling activity in the prostate is associated with the presence of primary cilia on stromal cells but that a role in autocrine Hh signaling remains speculative.</p>
|