Adaptive Double-Diffusion Model and Comparison to a Highly Heterogeneous Micro-Model
Double-diffusion model is used to simulate slightly compressible fluid flow in periodic porous media as a macro-model in place of the original highly heterogeneous micro-model. In this paper, we formulate an adaptive two-grid numerical finite element discretization of the double-diffusion system and...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2012-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2012/938727 |
Summary: | Double-diffusion model is used to simulate slightly compressible fluid flow in periodic porous media as a macro-model in place of the original highly heterogeneous micro-model. In this paper, we formulate an adaptive two-grid numerical finite element discretization of the double-diffusion system and perform a comparison between the micro- and macro-model. Our numerical results show that the micro-model solutions appear to converge to the macro-model linearly with the parameter ε of periodic geometry. For the two-grid discretization, the a priori and a posteriori error estimates are proved, and we show how to adapt the grid for each component independently. |
---|---|
ISSN: | 1110-757X 1687-0042 |