An emulator approach to stratocumulus susceptibility

<p>The climatic relevance of aerosol–cloud interactions depends on the sensitivity of the radiative effect of clouds to cloud droplet number <span class="inline-formula"><i>N</i></span>, and liquid water path LWP. We derive the dependence of cloud fraction CF,...

Full description

Bibliographic Details
Main Authors: F. Glassmeier, F. Hoffmann, J. S. Johnson, T. Yamaguchi, K. S. Carslaw, G. Feingold
Format: Article
Language:English
Published: Copernicus Publications 2019-08-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/19/10191/2019/acp-19-10191-2019.pdf
id doaj-771139b95c3f477aab72db9bd5988c68
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author F. Glassmeier
F. Glassmeier
F. Hoffmann
F. Hoffmann
J. S. Johnson
T. Yamaguchi
T. Yamaguchi
K. S. Carslaw
G. Feingold
spellingShingle F. Glassmeier
F. Glassmeier
F. Hoffmann
F. Hoffmann
J. S. Johnson
T. Yamaguchi
T. Yamaguchi
K. S. Carslaw
G. Feingold
An emulator approach to stratocumulus susceptibility
Atmospheric Chemistry and Physics
author_facet F. Glassmeier
F. Glassmeier
F. Hoffmann
F. Hoffmann
J. S. Johnson
T. Yamaguchi
T. Yamaguchi
K. S. Carslaw
G. Feingold
author_sort F. Glassmeier
title An emulator approach to stratocumulus susceptibility
title_short An emulator approach to stratocumulus susceptibility
title_full An emulator approach to stratocumulus susceptibility
title_fullStr An emulator approach to stratocumulus susceptibility
title_full_unstemmed An emulator approach to stratocumulus susceptibility
title_sort emulator approach to stratocumulus susceptibility
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2019-08-01
description <p>The climatic relevance of aerosol–cloud interactions depends on the sensitivity of the radiative effect of clouds to cloud droplet number <span class="inline-formula"><i>N</i></span>, and liquid water path LWP. We derive the dependence of cloud fraction CF, cloud albedo <span class="inline-formula"><i>A</i><sub>C</sub></span>, and the relative cloud radiative effect <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mtext>rCRE</mtext><mo>=</mo><mtext>CF</mtext><mo>⋅</mo><msub><mi>A</mi><mtext>C</mtext></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="75pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="04b90a5dc217adf737c6571084a1e32c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-10191-2019-ie00001.svg" width="75pt" height="13pt" src="acp-19-10191-2019-ie00001.png"/></svg:svg></span></span> on <span class="inline-formula"><i>N</i></span> and LWP from 159 large-eddy simulations of nocturnal stratocumulus. These simulations vary in their initial conditions for temperature, moisture, boundary-layer height, and aerosol concentration but share boundary conditions for surface fluxes and subsidence. Our approach is based on Gaussian-process emulation, a statistical technique related to machine learning. We succeed in building emulators that accurately predict simulated values of CF, <span class="inline-formula"><i>A</i><sub>C</sub></span>, and rCRE for given values of <span class="inline-formula"><i>N</i></span> and LWP. Emulator-derived susceptibilities <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∂</mo><mi>ln⁡</mi><mtext>rCRE</mtext><mo>/</mo><mo>∂</mo><mi>ln⁡</mi><mi>N</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="79pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="754867febeb12f3e2702559dae288dbe"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-10191-2019-ie00002.svg" width="79pt" height="14pt" src="acp-19-10191-2019-ie00002.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∂</mo><mi>ln⁡</mi><mtext>rCRE</mtext><mo>/</mo><mo>∂</mo><mi>ln⁡</mi><mtext>LWP</mtext></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="94pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="13d5a44c4b9d759c1e81a57e52a37726"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-10191-2019-ie00003.svg" width="94pt" height="14pt" src="acp-19-10191-2019-ie00003.png"/></svg:svg></span></span> cover the nondrizzling, fully overcast regime as well as the drizzling regime with broken cloud cover. Theoretical results, which are limited to the nondrizzling regime, are reproduced. The susceptibility <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∂</mo><mi>ln⁡</mi><mtext>rCRE</mtext><mo>/</mo><mo>∂</mo><mi>ln⁡</mi><mi>N</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="79pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="febfb39e1021efe691810f564824a15b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-10191-2019-ie00004.svg" width="79pt" height="14pt" src="acp-19-10191-2019-ie00004.png"/></svg:svg></span></span> captures the strong sensitivity of the cloud radiative effect to cloud fraction, while the susceptibility <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∂</mo><mi>ln⁡</mi><mtext>rCRE</mtext><mo>/</mo><mo>∂</mo><mi>ln⁡</mi><mtext>LWP</mtext></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="94pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="9db89e2bed541b688ed7a46d4da6c12d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-10191-2019-ie00005.svg" width="94pt" height="14pt" src="acp-19-10191-2019-ie00005.png"/></svg:svg></span></span> describes the influence of cloud amount on cloud albedo irrespective of cloud fraction. Our emulation-based approach provides a powerful tool for summarizing complex data in a simple framework that captures the sensitivities of cloud-field properties over a wide range of states.</p>
url https://www.atmos-chem-phys.net/19/10191/2019/acp-19-10191-2019.pdf
work_keys_str_mv AT fglassmeier anemulatorapproachtostratocumulussusceptibility
AT fglassmeier anemulatorapproachtostratocumulussusceptibility
AT fhoffmann anemulatorapproachtostratocumulussusceptibility
AT fhoffmann anemulatorapproachtostratocumulussusceptibility
AT jsjohnson anemulatorapproachtostratocumulussusceptibility
AT tyamaguchi anemulatorapproachtostratocumulussusceptibility
AT tyamaguchi anemulatorapproachtostratocumulussusceptibility
AT kscarslaw anemulatorapproachtostratocumulussusceptibility
AT gfeingold anemulatorapproachtostratocumulussusceptibility
AT fglassmeier emulatorapproachtostratocumulussusceptibility
AT fglassmeier emulatorapproachtostratocumulussusceptibility
AT fhoffmann emulatorapproachtostratocumulussusceptibility
AT fhoffmann emulatorapproachtostratocumulussusceptibility
AT jsjohnson emulatorapproachtostratocumulussusceptibility
AT tyamaguchi emulatorapproachtostratocumulussusceptibility
AT tyamaguchi emulatorapproachtostratocumulussusceptibility
AT kscarslaw emulatorapproachtostratocumulussusceptibility
AT gfeingold emulatorapproachtostratocumulussusceptibility
_version_ 1725808290642788352
spelling doaj-771139b95c3f477aab72db9bd5988c682020-11-24T22:10:25ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-08-0119101911020310.5194/acp-19-10191-2019An emulator approach to stratocumulus susceptibilityF. Glassmeier0F. Glassmeier1F. Hoffmann2F. Hoffmann3J. S. Johnson4T. Yamaguchi5T. Yamaguchi6K. S. Carslaw7G. Feingold8Chemical Sciences Division, NOAA Earth System Research Laboratory, 325 Broadway, Boulder, CO 80302, USADepartment of Environmental Sciences, Wageningen University, P.O. Box 47, 6700AA Wageningen, the NetherlandsChemical Sciences Division, NOAA Earth System Research Laboratory, 325 Broadway, Boulder, CO 80302, USACooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USASchool of Earth and Environment, University of Leeds, Woodhouse Lane Leeds, LS2 9JT, UKChemical Sciences Division, NOAA Earth System Research Laboratory, 325 Broadway, Boulder, CO 80302, USACooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USASchool of Earth and Environment, University of Leeds, Woodhouse Lane Leeds, LS2 9JT, UKChemical Sciences Division, NOAA Earth System Research Laboratory, 325 Broadway, Boulder, CO 80302, USA<p>The climatic relevance of aerosol–cloud interactions depends on the sensitivity of the radiative effect of clouds to cloud droplet number <span class="inline-formula"><i>N</i></span>, and liquid water path LWP. We derive the dependence of cloud fraction CF, cloud albedo <span class="inline-formula"><i>A</i><sub>C</sub></span>, and the relative cloud radiative effect <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mtext>rCRE</mtext><mo>=</mo><mtext>CF</mtext><mo>⋅</mo><msub><mi>A</mi><mtext>C</mtext></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="75pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="04b90a5dc217adf737c6571084a1e32c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-10191-2019-ie00001.svg" width="75pt" height="13pt" src="acp-19-10191-2019-ie00001.png"/></svg:svg></span></span> on <span class="inline-formula"><i>N</i></span> and LWP from 159 large-eddy simulations of nocturnal stratocumulus. These simulations vary in their initial conditions for temperature, moisture, boundary-layer height, and aerosol concentration but share boundary conditions for surface fluxes and subsidence. Our approach is based on Gaussian-process emulation, a statistical technique related to machine learning. We succeed in building emulators that accurately predict simulated values of CF, <span class="inline-formula"><i>A</i><sub>C</sub></span>, and rCRE for given values of <span class="inline-formula"><i>N</i></span> and LWP. Emulator-derived susceptibilities <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∂</mo><mi>ln⁡</mi><mtext>rCRE</mtext><mo>/</mo><mo>∂</mo><mi>ln⁡</mi><mi>N</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="79pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="754867febeb12f3e2702559dae288dbe"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-10191-2019-ie00002.svg" width="79pt" height="14pt" src="acp-19-10191-2019-ie00002.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∂</mo><mi>ln⁡</mi><mtext>rCRE</mtext><mo>/</mo><mo>∂</mo><mi>ln⁡</mi><mtext>LWP</mtext></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="94pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="13d5a44c4b9d759c1e81a57e52a37726"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-10191-2019-ie00003.svg" width="94pt" height="14pt" src="acp-19-10191-2019-ie00003.png"/></svg:svg></span></span> cover the nondrizzling, fully overcast regime as well as the drizzling regime with broken cloud cover. Theoretical results, which are limited to the nondrizzling regime, are reproduced. The susceptibility <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∂</mo><mi>ln⁡</mi><mtext>rCRE</mtext><mo>/</mo><mo>∂</mo><mi>ln⁡</mi><mi>N</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="79pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="febfb39e1021efe691810f564824a15b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-10191-2019-ie00004.svg" width="79pt" height="14pt" src="acp-19-10191-2019-ie00004.png"/></svg:svg></span></span> captures the strong sensitivity of the cloud radiative effect to cloud fraction, while the susceptibility <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∂</mo><mi>ln⁡</mi><mtext>rCRE</mtext><mo>/</mo><mo>∂</mo><mi>ln⁡</mi><mtext>LWP</mtext></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="94pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="9db89e2bed541b688ed7a46d4da6c12d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-10191-2019-ie00005.svg" width="94pt" height="14pt" src="acp-19-10191-2019-ie00005.png"/></svg:svg></span></span> describes the influence of cloud amount on cloud albedo irrespective of cloud fraction. Our emulation-based approach provides a powerful tool for summarizing complex data in a simple framework that captures the sensitivities of cloud-field properties over a wide range of states.</p>https://www.atmos-chem-phys.net/19/10191/2019/acp-19-10191-2019.pdf