An emulator approach to stratocumulus susceptibility
<p>The climatic relevance of aerosol–cloud interactions depends on the sensitivity of the radiative effect of clouds to cloud droplet number <span class="inline-formula"><i>N</i></span>, and liquid water path LWP. We derive the dependence of cloud fraction CF,...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-08-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/19/10191/2019/acp-19-10191-2019.pdf |
id |
doaj-771139b95c3f477aab72db9bd5988c68 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
F. Glassmeier F. Glassmeier F. Hoffmann F. Hoffmann J. S. Johnson T. Yamaguchi T. Yamaguchi K. S. Carslaw G. Feingold |
spellingShingle |
F. Glassmeier F. Glassmeier F. Hoffmann F. Hoffmann J. S. Johnson T. Yamaguchi T. Yamaguchi K. S. Carslaw G. Feingold An emulator approach to stratocumulus susceptibility Atmospheric Chemistry and Physics |
author_facet |
F. Glassmeier F. Glassmeier F. Hoffmann F. Hoffmann J. S. Johnson T. Yamaguchi T. Yamaguchi K. S. Carslaw G. Feingold |
author_sort |
F. Glassmeier |
title |
An emulator approach to stratocumulus susceptibility |
title_short |
An emulator approach to stratocumulus susceptibility |
title_full |
An emulator approach to stratocumulus susceptibility |
title_fullStr |
An emulator approach to stratocumulus susceptibility |
title_full_unstemmed |
An emulator approach to stratocumulus susceptibility |
title_sort |
emulator approach to stratocumulus susceptibility |
publisher |
Copernicus Publications |
series |
Atmospheric Chemistry and Physics |
issn |
1680-7316 1680-7324 |
publishDate |
2019-08-01 |
description |
<p>The climatic relevance of aerosol–cloud interactions depends on the sensitivity of the radiative effect of clouds to cloud droplet number <span class="inline-formula"><i>N</i></span>, and liquid water path LWP.
We derive the dependence of cloud fraction CF, cloud albedo <span class="inline-formula"><i>A</i><sub>C</sub></span>, and the relative cloud radiative effect <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mtext>rCRE</mtext><mo>=</mo><mtext>CF</mtext><mo>⋅</mo><msub><mi>A</mi><mtext>C</mtext></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="75pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="04b90a5dc217adf737c6571084a1e32c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-10191-2019-ie00001.svg" width="75pt" height="13pt" src="acp-19-10191-2019-ie00001.png"/></svg:svg></span></span> on <span class="inline-formula"><i>N</i></span> and LWP from 159 large-eddy simulations of nocturnal stratocumulus.
These simulations vary in their initial conditions for temperature, moisture, boundary-layer height, and aerosol concentration but share boundary conditions for surface fluxes and subsidence.
Our approach is based on Gaussian-process emulation, a statistical technique related to machine learning.
We succeed in building emulators that accurately predict simulated values of CF, <span class="inline-formula"><i>A</i><sub>C</sub></span>, and rCRE for given values of <span class="inline-formula"><i>N</i></span> and LWP.
Emulator-derived susceptibilities <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∂</mo><mi>ln</mi><mtext>rCRE</mtext><mo>/</mo><mo>∂</mo><mi>ln</mi><mi>N</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="79pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="754867febeb12f3e2702559dae288dbe"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-10191-2019-ie00002.svg" width="79pt" height="14pt" src="acp-19-10191-2019-ie00002.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∂</mo><mi>ln</mi><mtext>rCRE</mtext><mo>/</mo><mo>∂</mo><mi>ln</mi><mtext>LWP</mtext></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="94pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="13d5a44c4b9d759c1e81a57e52a37726"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-10191-2019-ie00003.svg" width="94pt" height="14pt" src="acp-19-10191-2019-ie00003.png"/></svg:svg></span></span> cover the nondrizzling, fully overcast regime as well as the drizzling regime with broken cloud cover.
Theoretical results, which are limited to the nondrizzling regime, are reproduced.
The susceptibility <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∂</mo><mi>ln</mi><mtext>rCRE</mtext><mo>/</mo><mo>∂</mo><mi>ln</mi><mi>N</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="79pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="febfb39e1021efe691810f564824a15b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-10191-2019-ie00004.svg" width="79pt" height="14pt" src="acp-19-10191-2019-ie00004.png"/></svg:svg></span></span> captures the strong sensitivity of the cloud radiative effect to cloud fraction, while the susceptibility <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∂</mo><mi>ln</mi><mtext>rCRE</mtext><mo>/</mo><mo>∂</mo><mi>ln</mi><mtext>LWP</mtext></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="94pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="9db89e2bed541b688ed7a46d4da6c12d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-10191-2019-ie00005.svg" width="94pt" height="14pt" src="acp-19-10191-2019-ie00005.png"/></svg:svg></span></span> describes the influence of cloud amount on cloud albedo irrespective of cloud fraction.
Our emulation-based approach provides a powerful tool for summarizing complex data in a simple framework that captures the sensitivities of cloud-field properties over a wide range of states.</p> |
url |
https://www.atmos-chem-phys.net/19/10191/2019/acp-19-10191-2019.pdf |
work_keys_str_mv |
AT fglassmeier anemulatorapproachtostratocumulussusceptibility AT fglassmeier anemulatorapproachtostratocumulussusceptibility AT fhoffmann anemulatorapproachtostratocumulussusceptibility AT fhoffmann anemulatorapproachtostratocumulussusceptibility AT jsjohnson anemulatorapproachtostratocumulussusceptibility AT tyamaguchi anemulatorapproachtostratocumulussusceptibility AT tyamaguchi anemulatorapproachtostratocumulussusceptibility AT kscarslaw anemulatorapproachtostratocumulussusceptibility AT gfeingold anemulatorapproachtostratocumulussusceptibility AT fglassmeier emulatorapproachtostratocumulussusceptibility AT fglassmeier emulatorapproachtostratocumulussusceptibility AT fhoffmann emulatorapproachtostratocumulussusceptibility AT fhoffmann emulatorapproachtostratocumulussusceptibility AT jsjohnson emulatorapproachtostratocumulussusceptibility AT tyamaguchi emulatorapproachtostratocumulussusceptibility AT tyamaguchi emulatorapproachtostratocumulussusceptibility AT kscarslaw emulatorapproachtostratocumulussusceptibility AT gfeingold emulatorapproachtostratocumulussusceptibility |
_version_ |
1725808290642788352 |
spelling |
doaj-771139b95c3f477aab72db9bd5988c682020-11-24T22:10:25ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-08-0119101911020310.5194/acp-19-10191-2019An emulator approach to stratocumulus susceptibilityF. Glassmeier0F. Glassmeier1F. Hoffmann2F. Hoffmann3J. S. Johnson4T. Yamaguchi5T. Yamaguchi6K. S. Carslaw7G. Feingold8Chemical Sciences Division, NOAA Earth System Research Laboratory, 325 Broadway, Boulder, CO 80302, USADepartment of Environmental Sciences, Wageningen University, P.O. Box 47, 6700AA Wageningen, the NetherlandsChemical Sciences Division, NOAA Earth System Research Laboratory, 325 Broadway, Boulder, CO 80302, USACooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USASchool of Earth and Environment, University of Leeds, Woodhouse Lane Leeds, LS2 9JT, UKChemical Sciences Division, NOAA Earth System Research Laboratory, 325 Broadway, Boulder, CO 80302, USACooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USASchool of Earth and Environment, University of Leeds, Woodhouse Lane Leeds, LS2 9JT, UKChemical Sciences Division, NOAA Earth System Research Laboratory, 325 Broadway, Boulder, CO 80302, USA<p>The climatic relevance of aerosol–cloud interactions depends on the sensitivity of the radiative effect of clouds to cloud droplet number <span class="inline-formula"><i>N</i></span>, and liquid water path LWP. We derive the dependence of cloud fraction CF, cloud albedo <span class="inline-formula"><i>A</i><sub>C</sub></span>, and the relative cloud radiative effect <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mtext>rCRE</mtext><mo>=</mo><mtext>CF</mtext><mo>⋅</mo><msub><mi>A</mi><mtext>C</mtext></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="75pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="04b90a5dc217adf737c6571084a1e32c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-10191-2019-ie00001.svg" width="75pt" height="13pt" src="acp-19-10191-2019-ie00001.png"/></svg:svg></span></span> on <span class="inline-formula"><i>N</i></span> and LWP from 159 large-eddy simulations of nocturnal stratocumulus. These simulations vary in their initial conditions for temperature, moisture, boundary-layer height, and aerosol concentration but share boundary conditions for surface fluxes and subsidence. Our approach is based on Gaussian-process emulation, a statistical technique related to machine learning. We succeed in building emulators that accurately predict simulated values of CF, <span class="inline-formula"><i>A</i><sub>C</sub></span>, and rCRE for given values of <span class="inline-formula"><i>N</i></span> and LWP. Emulator-derived susceptibilities <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∂</mo><mi>ln</mi><mtext>rCRE</mtext><mo>/</mo><mo>∂</mo><mi>ln</mi><mi>N</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="79pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="754867febeb12f3e2702559dae288dbe"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-10191-2019-ie00002.svg" width="79pt" height="14pt" src="acp-19-10191-2019-ie00002.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∂</mo><mi>ln</mi><mtext>rCRE</mtext><mo>/</mo><mo>∂</mo><mi>ln</mi><mtext>LWP</mtext></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="94pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="13d5a44c4b9d759c1e81a57e52a37726"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-10191-2019-ie00003.svg" width="94pt" height="14pt" src="acp-19-10191-2019-ie00003.png"/></svg:svg></span></span> cover the nondrizzling, fully overcast regime as well as the drizzling regime with broken cloud cover. Theoretical results, which are limited to the nondrizzling regime, are reproduced. The susceptibility <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∂</mo><mi>ln</mi><mtext>rCRE</mtext><mo>/</mo><mo>∂</mo><mi>ln</mi><mi>N</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="79pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="febfb39e1021efe691810f564824a15b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-10191-2019-ie00004.svg" width="79pt" height="14pt" src="acp-19-10191-2019-ie00004.png"/></svg:svg></span></span> captures the strong sensitivity of the cloud radiative effect to cloud fraction, while the susceptibility <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∂</mo><mi>ln</mi><mtext>rCRE</mtext><mo>/</mo><mo>∂</mo><mi>ln</mi><mtext>LWP</mtext></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="94pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="9db89e2bed541b688ed7a46d4da6c12d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-10191-2019-ie00005.svg" width="94pt" height="14pt" src="acp-19-10191-2019-ie00005.png"/></svg:svg></span></span> describes the influence of cloud amount on cloud albedo irrespective of cloud fraction. Our emulation-based approach provides a powerful tool for summarizing complex data in a simple framework that captures the sensitivities of cloud-field properties over a wide range of states.</p>https://www.atmos-chem-phys.net/19/10191/2019/acp-19-10191-2019.pdf |