Fire Control System Operation Status Assessment Based on Information Fusion: Case Study

In traditional fault diagnosis strategies, massive and disordered data cannot be utilized effectively. Furthermore, just a single parameter is used for fault diagnosis of a weapons fire control system, which might lead to uncertainty in the results. This paper proposes an information fusion method i...

Full description

Bibliographic Details
Main Authors: Yingshun Li, Aina Wang, Xiaojian Yi
Format: Article
Language:English
Published: MDPI AG 2019-05-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/19/10/2222
id doaj-76fd61a515624a7fad814608ff61e994
record_format Article
spelling doaj-76fd61a515624a7fad814608ff61e9942020-11-25T01:18:01ZengMDPI AGSensors1424-82202019-05-011910222210.3390/s19102222s19102222Fire Control System Operation Status Assessment Based on Information Fusion: Case StudyYingshun Li0Aina Wang1Xiaojian Yi2Faculty of Electronic and Electrical Engineering, Dalian University of Technology, Dalian 116081, ChinaFaculty of Electronic and Electrical Engineering, Dalian University of Technology, Dalian 116081, ChinaThe School of Mechatronical Engineering, Beijing Institute of Technology, & Department of Overall Technology, China North Vehicle Research Institute & Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 10071, ChinaIn traditional fault diagnosis strategies, massive and disordered data cannot be utilized effectively. Furthermore, just a single parameter is used for fault diagnosis of a weapons fire control system, which might lead to uncertainty in the results. This paper proposes an information fusion method in which rough set theory (RST) is combined with an improved Dempster–Shafer (DS) evidence theory to identify various system operation states. First, the feature information of different faults is extracted from the original data, then this information is used as the evidence of the state for a diagnosis object. By introducing RST, the extracted fault information is reduced in terms of the number of attributes, and the basic probability value of the reduced fault information is obtained. Based on an analysis of conflicts in the existing DS evidence theory, an improved conflict evidence synthesis method is proposed, which combines the improved synthesis rule and the conflict evidence weight allocation methods. Then, an intelligent evaluation model for the fire control system operation state is established, which is based on the improved evidence theory and RST. The case of a power supply module in a fire control computer is analyzed. In this case, the state grade of the power supply module is evaluated by the proposed method, and the conclusion verifies the effectiveness of the proposed method in evaluating the operation state of a fire control system.https://www.mdpi.com/1424-8220/19/10/2222fire control systemstatus assessmentDS evidence theoryrough set theoryinformation fusion
collection DOAJ
language English
format Article
sources DOAJ
author Yingshun Li
Aina Wang
Xiaojian Yi
spellingShingle Yingshun Li
Aina Wang
Xiaojian Yi
Fire Control System Operation Status Assessment Based on Information Fusion: Case Study
Sensors
fire control system
status assessment
DS evidence theory
rough set theory
information fusion
author_facet Yingshun Li
Aina Wang
Xiaojian Yi
author_sort Yingshun Li
title Fire Control System Operation Status Assessment Based on Information Fusion: Case Study
title_short Fire Control System Operation Status Assessment Based on Information Fusion: Case Study
title_full Fire Control System Operation Status Assessment Based on Information Fusion: Case Study
title_fullStr Fire Control System Operation Status Assessment Based on Information Fusion: Case Study
title_full_unstemmed Fire Control System Operation Status Assessment Based on Information Fusion: Case Study
title_sort fire control system operation status assessment based on information fusion: case study
publisher MDPI AG
series Sensors
issn 1424-8220
publishDate 2019-05-01
description In traditional fault diagnosis strategies, massive and disordered data cannot be utilized effectively. Furthermore, just a single parameter is used for fault diagnosis of a weapons fire control system, which might lead to uncertainty in the results. This paper proposes an information fusion method in which rough set theory (RST) is combined with an improved Dempster–Shafer (DS) evidence theory to identify various system operation states. First, the feature information of different faults is extracted from the original data, then this information is used as the evidence of the state for a diagnosis object. By introducing RST, the extracted fault information is reduced in terms of the number of attributes, and the basic probability value of the reduced fault information is obtained. Based on an analysis of conflicts in the existing DS evidence theory, an improved conflict evidence synthesis method is proposed, which combines the improved synthesis rule and the conflict evidence weight allocation methods. Then, an intelligent evaluation model for the fire control system operation state is established, which is based on the improved evidence theory and RST. The case of a power supply module in a fire control computer is analyzed. In this case, the state grade of the power supply module is evaluated by the proposed method, and the conclusion verifies the effectiveness of the proposed method in evaluating the operation state of a fire control system.
topic fire control system
status assessment
DS evidence theory
rough set theory
information fusion
url https://www.mdpi.com/1424-8220/19/10/2222
work_keys_str_mv AT yingshunli firecontrolsystemoperationstatusassessmentbasedoninformationfusioncasestudy
AT ainawang firecontrolsystemoperationstatusassessmentbasedoninformationfusioncasestudy
AT xiaojianyi firecontrolsystemoperationstatusassessmentbasedoninformationfusioncasestudy
_version_ 1725144304510304256