An Analytical Solution for Non-Linear Viscoelastic Impact
The paper presents an analytical solution for the centric viscoelastic impact of two smooth balls. The contact period has two phases, compression and restitution, delimited by the moment corresponding to maximum deformation. The motion of the system is described by a nonlinear Hunt–Crossley equation...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/9/16/1849 |
id |
doaj-76f149f5bf6646a5a16cb0f998672a4f |
---|---|
record_format |
Article |
spelling |
doaj-76f149f5bf6646a5a16cb0f998672a4f2021-08-26T14:01:55ZengMDPI AGMathematics2227-73902021-08-0191849184910.3390/math9161849An Analytical Solution for Non-Linear Viscoelastic ImpactStelian Alaci0Constantin Filote1Florina-Carmen Ciornei2Oana Vasilica Grosu3Maria Simona Raboaca4Faculty of Mechanics, Mechatronics and Management, Stefan cel Mare University of Suceava, 720229 Suceava, RomaniaFaculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, 720229 Suceava, RomaniaFaculty of Mechanics, Mechatronics and Management, Stefan cel Mare University of Suceava, 720229 Suceava, RomaniaFaculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, 720229 Suceava, RomaniaFaculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, 720229 Suceava, RomaniaThe paper presents an analytical solution for the centric viscoelastic impact of two smooth balls. The contact period has two phases, compression and restitution, delimited by the moment corresponding to maximum deformation. The motion of the system is described by a nonlinear Hunt–Crossley equation that, when compared to the linear model, presents the advantage of a hysteresis loop closing in origin. There is only a single available equation obtained from the theorem of momentum. In order to solve the problem, in the literature, there are accepted different supplementary hypotheses based on energy considerations. In the present paper, the differential equation is written under a convenient form; it is shown that it can be integrated and a first integral is found—this being the main asset of the work. Then, all impact parameters can be calculated. The effect of coefficient of restitution upon all collision characteristics is emphasized, presenting importance for the compliant materials, in the domain of small coefficients of restitution. The results (variations of approach, velocity, force vs. time and hysteresis loop) are compared to two models due to Lankarani and Flores. For quasi-elastic collisions, the results are practically the same for the three models. For smaller values of the coefficient of restitution, the results of the present paper are in good agreement only to the Flores model. The simplified algorithm for the calculus of viscoelastic impact parameters is also presented. This algorithm avoids the large calculus volume required by solving the transcendental equations and definite integrals present in the mathematical model. The method proposed, based on the viscoelastic model given by Hunt and Crossley, can be extended to the elasto–visco–plastic nonlinear impact model.https://www.mdpi.com/2227-7390/9/16/1849nonlinear ODEdamped collisionanalytical solution |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Stelian Alaci Constantin Filote Florina-Carmen Ciornei Oana Vasilica Grosu Maria Simona Raboaca |
spellingShingle |
Stelian Alaci Constantin Filote Florina-Carmen Ciornei Oana Vasilica Grosu Maria Simona Raboaca An Analytical Solution for Non-Linear Viscoelastic Impact Mathematics nonlinear ODE damped collision analytical solution |
author_facet |
Stelian Alaci Constantin Filote Florina-Carmen Ciornei Oana Vasilica Grosu Maria Simona Raboaca |
author_sort |
Stelian Alaci |
title |
An Analytical Solution for Non-Linear Viscoelastic Impact |
title_short |
An Analytical Solution for Non-Linear Viscoelastic Impact |
title_full |
An Analytical Solution for Non-Linear Viscoelastic Impact |
title_fullStr |
An Analytical Solution for Non-Linear Viscoelastic Impact |
title_full_unstemmed |
An Analytical Solution for Non-Linear Viscoelastic Impact |
title_sort |
analytical solution for non-linear viscoelastic impact |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2021-08-01 |
description |
The paper presents an analytical solution for the centric viscoelastic impact of two smooth balls. The contact period has two phases, compression and restitution, delimited by the moment corresponding to maximum deformation. The motion of the system is described by a nonlinear Hunt–Crossley equation that, when compared to the linear model, presents the advantage of a hysteresis loop closing in origin. There is only a single available equation obtained from the theorem of momentum. In order to solve the problem, in the literature, there are accepted different supplementary hypotheses based on energy considerations. In the present paper, the differential equation is written under a convenient form; it is shown that it can be integrated and a first integral is found—this being the main asset of the work. Then, all impact parameters can be calculated. The effect of coefficient of restitution upon all collision characteristics is emphasized, presenting importance for the compliant materials, in the domain of small coefficients of restitution. The results (variations of approach, velocity, force vs. time and hysteresis loop) are compared to two models due to Lankarani and Flores. For quasi-elastic collisions, the results are practically the same for the three models. For smaller values of the coefficient of restitution, the results of the present paper are in good agreement only to the Flores model. The simplified algorithm for the calculus of viscoelastic impact parameters is also presented. This algorithm avoids the large calculus volume required by solving the transcendental equations and definite integrals present in the mathematical model. The method proposed, based on the viscoelastic model given by Hunt and Crossley, can be extended to the elasto–visco–plastic nonlinear impact model. |
topic |
nonlinear ODE damped collision analytical solution |
url |
https://www.mdpi.com/2227-7390/9/16/1849 |
work_keys_str_mv |
AT stelianalaci ananalyticalsolutionfornonlinearviscoelasticimpact AT constantinfilote ananalyticalsolutionfornonlinearviscoelasticimpact AT florinacarmenciornei ananalyticalsolutionfornonlinearviscoelasticimpact AT oanavasilicagrosu ananalyticalsolutionfornonlinearviscoelasticimpact AT mariasimonaraboaca ananalyticalsolutionfornonlinearviscoelasticimpact AT stelianalaci analyticalsolutionfornonlinearviscoelasticimpact AT constantinfilote analyticalsolutionfornonlinearviscoelasticimpact AT florinacarmenciornei analyticalsolutionfornonlinearviscoelasticimpact AT oanavasilicagrosu analyticalsolutionfornonlinearviscoelasticimpact AT mariasimonaraboaca analyticalsolutionfornonlinearviscoelasticimpact |
_version_ |
1721191827688652800 |