Reduction of Wave Overtopping and Force Impact at Harbor Quays Due to Very Oblique Waves
Physical model experiments were conducted in a wave tank at Flanders Hydraulics Research, Antwerp, Belgium, to characterize the wave overtopping and impact force on vertical quay walls and sloping sea dike (1:2.5) under very oblique wave attack (angle between 45° and 80°). This study was triggered b...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-08-01
|
Series: | Journal of Marine Science and Engineering |
Subjects: | |
Online Access: | https://www.mdpi.com/2077-1312/8/8/598 |
id |
doaj-76e0237d3f3f4c26bfce54971d0978f1 |
---|---|
record_format |
Article |
spelling |
doaj-76e0237d3f3f4c26bfce54971d0978f12021-04-02T11:26:49ZengMDPI AGJournal of Marine Science and Engineering2077-13122020-08-01859859810.3390/jmse8080598Reduction of Wave Overtopping and Force Impact at Harbor Quays Due to Very Oblique WavesSebastian Dan0Corrado Altomare1Tomohiro Suzuki2Tim Spiesschaert3Toon Verwaest4Flanders Hydraulics Research, Berchemlei 115, 2140 Antwerp, BelgiumLaboratori d'Enginyeria Maritima, Universitat Politècnica de Catalunya—BarcelonaTech (UPC), 08034 Barcelona, SpainFlanders Hydraulics Research, Berchemlei 115, 2140 Antwerp, BelgiumFlanders Hydraulics Research, Berchemlei 115, 2140 Antwerp, BelgiumFlanders Hydraulics Research, Berchemlei 115, 2140 Antwerp, BelgiumPhysical model experiments were conducted in a wave tank at Flanders Hydraulics Research, Antwerp, Belgium, to characterize the wave overtopping and impact force on vertical quay walls and sloping sea dike (1:2.5) under very oblique wave attack (angle between 45° and 80°). This study was triggered by the scarce scientific literature on the overtopping and force reduction due to very oblique waves since large reduction is expected for both when compared with the perpendicular wave attack. The study aimed to compare the results from the experimental tests with formulas derived from previous experiments and applicable to a Belgian harbor generic case. The influence of storm return walls and crest berm width on top of the dikes has been analyzed in combination with the wave obliqueness. The results indicate significant reduction of the overtopping due to very oblique waves and new reduction coefficients were proposed. When compared with formulas from previous studies the proposed coefficients indicate the best fit for the overtopping reduction. Position of the storm return wall respect to the quay edge rather than its height was found to be more important for preventing wave induced overtopping. The force reduction is up to approximately 50% for the oblique waves with respect to the perpendicular wave impact and reduction coefficients were proposed for two different configurations a sea dike and vertical quay wall, respectively.https://www.mdpi.com/2077-1312/8/8/598overtopping reductionforce reductionoblique wavesstorm return wallEurOtop manual |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sebastian Dan Corrado Altomare Tomohiro Suzuki Tim Spiesschaert Toon Verwaest |
spellingShingle |
Sebastian Dan Corrado Altomare Tomohiro Suzuki Tim Spiesschaert Toon Verwaest Reduction of Wave Overtopping and Force Impact at Harbor Quays Due to Very Oblique Waves Journal of Marine Science and Engineering overtopping reduction force reduction oblique waves storm return wall EurOtop manual |
author_facet |
Sebastian Dan Corrado Altomare Tomohiro Suzuki Tim Spiesschaert Toon Verwaest |
author_sort |
Sebastian Dan |
title |
Reduction of Wave Overtopping and Force Impact at Harbor Quays Due to Very Oblique Waves |
title_short |
Reduction of Wave Overtopping and Force Impact at Harbor Quays Due to Very Oblique Waves |
title_full |
Reduction of Wave Overtopping and Force Impact at Harbor Quays Due to Very Oblique Waves |
title_fullStr |
Reduction of Wave Overtopping and Force Impact at Harbor Quays Due to Very Oblique Waves |
title_full_unstemmed |
Reduction of Wave Overtopping and Force Impact at Harbor Quays Due to Very Oblique Waves |
title_sort |
reduction of wave overtopping and force impact at harbor quays due to very oblique waves |
publisher |
MDPI AG |
series |
Journal of Marine Science and Engineering |
issn |
2077-1312 |
publishDate |
2020-08-01 |
description |
Physical model experiments were conducted in a wave tank at Flanders Hydraulics Research, Antwerp, Belgium, to characterize the wave overtopping and impact force on vertical quay walls and sloping sea dike (1:2.5) under very oblique wave attack (angle between 45° and 80°). This study was triggered by the scarce scientific literature on the overtopping and force reduction due to very oblique waves since large reduction is expected for both when compared with the perpendicular wave attack. The study aimed to compare the results from the experimental tests with formulas derived from previous experiments and applicable to a Belgian harbor generic case. The influence of storm return walls and crest berm width on top of the dikes has been analyzed in combination with the wave obliqueness. The results indicate significant reduction of the overtopping due to very oblique waves and new reduction coefficients were proposed. When compared with formulas from previous studies the proposed coefficients indicate the best fit for the overtopping reduction. Position of the storm return wall respect to the quay edge rather than its height was found to be more important for preventing wave induced overtopping. The force reduction is up to approximately 50% for the oblique waves with respect to the perpendicular wave impact and reduction coefficients were proposed for two different configurations a sea dike and vertical quay wall, respectively. |
topic |
overtopping reduction force reduction oblique waves storm return wall EurOtop manual |
url |
https://www.mdpi.com/2077-1312/8/8/598 |
work_keys_str_mv |
AT sebastiandan reductionofwaveovertoppingandforceimpactatharborquaysduetoveryobliquewaves AT corradoaltomare reductionofwaveovertoppingandforceimpactatharborquaysduetoveryobliquewaves AT tomohirosuzuki reductionofwaveovertoppingandforceimpactatharborquaysduetoveryobliquewaves AT timspiesschaert reductionofwaveovertoppingandforceimpactatharborquaysduetoveryobliquewaves AT toonverwaest reductionofwaveovertoppingandforceimpactatharborquaysduetoveryobliquewaves |
_version_ |
1724164699891695616 |