Protective effects of glucosamine and its acetylated derivative on serum/glucose deprivation-induced PC12 cells death: Role of reactive oxygen species

Finding products with antiapoptotic activities has been one of the approaches for the treatment of neurodegenerative disorders. Serum/glucose deprivation (SGD) has been used as a model for the investigation of the molecular mechanisms of neuronal ischemia. Recent studies indicated that glucosamine (...

Full description

Bibliographic Details
Main Authors: Seyed Hadi Mousavi, Elham Bakhtiari, Azar Hosseini, Khadijeh Jamialahmadi
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2018-01-01
Series:Research in Pharmaceutical Sciences
Subjects:
Online Access:http://www.rpsjournal.net/article.asp?issn=1735-5362;year=2018;volume=13;issue=2;spage=121;epage=129;aulast=Mousavi
Description
Summary:Finding products with antiapoptotic activities has been one of the approaches for the treatment of neurodegenerative disorders. Serum/glucose deprivation (SGD) has been used as a model for the investigation of the molecular mechanisms of neuronal ischemia. Recent studies indicated that glucosamine (GlcN) and N-acetyl glucosamine (GlcNAc) have many pharmacological effects including antioxidant activities. The present study aimed to investigate the protective effects of GlcN and GlcNAc against SGD-induced PC12 cells injury. The PC12 cells were pretreated with GlcN and GlcNAc for 2 h, and then exposed to SGD for 6, 12 and 24 h. Cell viability was evaluated by MTT assay. The level of intracellular reactive oxygen species (ROS) was determined by flow cytometry using 2’,7’- dichlorofluorescin diacetate (DCFH-DA) as a probe. SGD condition caused a significant reduction in cell survival after 6, 12, and 24 h (P < 0.001). Pretreatment with GlcN and GlcNAc (0.6-20 mM) increased cell viability following SGD insult. A significant increase in cell apoptosis was observed in cells under SGD condition after 12 h (P < 0.001). Pretreatment with GlcN and GlcNAc (5-20 mM) decreased apoptosis following SGD condition after 12 h. SGD resulted in a significant increase in intracellular ROS production after 12 h. Pretreatment with both amino sugars at concentrations of 10 to 20 mM could reverse the ROS increment. Results indicated that GlcN and GlcNAc had a cytoprotective property against SGD-induced cell death via anti-apoptosis and antioxidant activities, suggesting that these aminosugers have the potential to be used as novel therapeutic agents for neurodegenerative disorders.
ISSN:1735-5362
1735-9414