Progress in Constraining Nuclear Symmetry Energy Using Neutron Star Observables Since GW170817

The density dependence of nuclear symmetry energy is among the most uncertain parts of the Equation of State (EOS) of dense neutron-rich nuclear matter. It is currently poorly known especially at suprasaturation densities partially because of our poor knowledge about isovector nuclear interactions a...

Full description

Bibliographic Details
Main Authors: Bao-An Li, Bao-Jun Cai, Wen-Jie Xie, Nai-Bo Zhang
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/7/6/182
id doaj-76d6b246dbc6494c988ee254af1eadca
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Bao-An Li
Bao-Jun Cai
Wen-Jie Xie
Nai-Bo Zhang
spellingShingle Bao-An Li
Bao-Jun Cai
Wen-Jie Xie
Nai-Bo Zhang
Progress in Constraining Nuclear Symmetry Energy Using Neutron Star Observables Since GW170817
Universe
equation of state
symmetry energy
neutron stars
Bayesian analysis
quark–hadron phase transition
tidal deformability
author_facet Bao-An Li
Bao-Jun Cai
Wen-Jie Xie
Nai-Bo Zhang
author_sort Bao-An Li
title Progress in Constraining Nuclear Symmetry Energy Using Neutron Star Observables Since GW170817
title_short Progress in Constraining Nuclear Symmetry Energy Using Neutron Star Observables Since GW170817
title_full Progress in Constraining Nuclear Symmetry Energy Using Neutron Star Observables Since GW170817
title_fullStr Progress in Constraining Nuclear Symmetry Energy Using Neutron Star Observables Since GW170817
title_full_unstemmed Progress in Constraining Nuclear Symmetry Energy Using Neutron Star Observables Since GW170817
title_sort progress in constraining nuclear symmetry energy using neutron star observables since gw170817
publisher MDPI AG
series Universe
issn 2218-1997
publishDate 2021-06-01
description The density dependence of nuclear symmetry energy is among the most uncertain parts of the Equation of State (EOS) of dense neutron-rich nuclear matter. It is currently poorly known especially at suprasaturation densities partially because of our poor knowledge about isovector nuclear interactions at short distances. Because of its broad impacts on many interesting issues, pinning down the density dependence of nuclear symmetry energy has been a longstanding and shared goal of both astrophysics and nuclear physics. New observational data of neutron stars including their masses, radii, and tidal deformations since GW170817 have helped improve our knowledge about nuclear symmetry energy, especially at high densities. Based on various model analyses of these new data by many people in the nuclear astrophysics community, while our brief review might be incomplete and biased unintentionally, we learned in particular the following: (1) The slope parameter <i>L</i> of nuclear symmetry energy at saturation density <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mn>0</mn></msub></semantics></math></inline-formula> of nuclear matter from 24 new analyses of neutron star observables was about <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>≈</mo><mn>57.7</mn><mo>±</mo><mn>19</mn></mrow></semantics></math></inline-formula> MeV at a 68% confidence level, consistent with its fiducial value from surveys of over 50 earlier analyses of both terrestrial and astrophysical data within error bars. (2) The curvature <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mi>sym</mi></msub></semantics></math></inline-formula> of nuclear symmetry energy at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mn>0</mn></msub></semantics></math></inline-formula> from 16 new analyses of neutron star observables was about <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>K</mi><mi>sym</mi></msub><mo>≈</mo><mo>−</mo><mn>107</mn><mo>±</mo><mn>88</mn></mrow></semantics></math></inline-formula> MeV at a 68% confidence level, in very good agreement with the systematics of earlier analyses. (3) The magnitude of nuclear symmetry energy at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><msub><mi>ρ</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>, i.e., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>E</mi><mi>sym</mi></msub><mrow><mo>(</mo><mn>2</mn><msub><mi>ρ</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>≈</mo><mn>51</mn><mo>±</mo><mn>13</mn></mrow></semantics></math></inline-formula> MeV at a 68% confidence level, was extracted from nine new analyses of neutron star observables, consistent with the results from earlier analyses of heavy-ion reactions and the latest predictions of the state-of-the-art nuclear many-body theories. (4) While the available data from canonical neutron stars did not provide tight constraints on nuclear symmetry energy at densities above about <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><msub><mi>ρ</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>, the lower radius boundary <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mrow><mn>2.01</mn></mrow></msub><mo>=</mo><mn>12.2</mn></mrow></semantics></math></inline-formula> km from NICER’s very recent observation of PSR J0740+6620 of mass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.08</mn><mo>±</mo><mn>0.07</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>M</mi><mo>⊙</mo></msub></semantics></math></inline-formula> and radius <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mo>=</mo><mn>12.2</mn><mo>–</mo><mn>16.3</mn></mrow></semantics></math></inline-formula> km at a 68% confidence level set a tight lower limit for nuclear symmetry energy at densities above <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><msub><mi>ρ</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>. (5) Bayesian inferences of nuclear symmetry energy using models encapsulating a first-order hadron–quark phase transition from observables of canonical neutron stars indicated that the phase transition shifted appreciably both <i>L</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mi>sym</mi></msub></semantics></math></inline-formula> to higher values, but with larger uncertainties compared to analyses assuming no such phase transition. (6) The high-density behavior of nuclear symmetry energy significantly affected the minimum frequency necessary to rotationally support GW190814’s secondary component of mass (2.50–2.67) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>M</mi><mo>⊙</mo></msub></semantics></math></inline-formula> as the fastest and most massive pulsar discovered so far. Overall, thanks to the hard work of many people in the astrophysics and nuclear physics community, new data of neutron star observations since the discovery of GW170817 have significantly enriched our knowledge about the symmetry energy of dense neutron-rich nuclear matter.
topic equation of state
symmetry energy
neutron stars
Bayesian analysis
quark–hadron phase transition
tidal deformability
url https://www.mdpi.com/2218-1997/7/6/182
work_keys_str_mv AT baoanli progressinconstrainingnuclearsymmetryenergyusingneutronstarobservablessincegw170817
AT baojuncai progressinconstrainingnuclearsymmetryenergyusingneutronstarobservablessincegw170817
AT wenjiexie progressinconstrainingnuclearsymmetryenergyusingneutronstarobservablessincegw170817
AT naibozhang progressinconstrainingnuclearsymmetryenergyusingneutronstarobservablessincegw170817
_version_ 1721351790465646592
spelling doaj-76d6b246dbc6494c988ee254af1eadca2021-06-30T23:16:43ZengMDPI AGUniverse2218-19972021-06-01718218210.3390/universe7060182Progress in Constraining Nuclear Symmetry Energy Using Neutron Star Observables Since GW170817Bao-An Li0Bao-Jun Cai1Wen-Jie Xie2Nai-Bo Zhang3Department of Physics and Astronomy, Texas A&M University-Commerce, Commerce, TX 75429-3011, USAQuantum Machine Learning Laboratory, Shadow Creator Inc., Shanghai 201208, ChinaDepartment of Physics, Yuncheng University, Yuncheng 044000, ChinaSchool of Physics, Southeast University, Nanjing 211189, ChinaThe density dependence of nuclear symmetry energy is among the most uncertain parts of the Equation of State (EOS) of dense neutron-rich nuclear matter. It is currently poorly known especially at suprasaturation densities partially because of our poor knowledge about isovector nuclear interactions at short distances. Because of its broad impacts on many interesting issues, pinning down the density dependence of nuclear symmetry energy has been a longstanding and shared goal of both astrophysics and nuclear physics. New observational data of neutron stars including their masses, radii, and tidal deformations since GW170817 have helped improve our knowledge about nuclear symmetry energy, especially at high densities. Based on various model analyses of these new data by many people in the nuclear astrophysics community, while our brief review might be incomplete and biased unintentionally, we learned in particular the following: (1) The slope parameter <i>L</i> of nuclear symmetry energy at saturation density <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mn>0</mn></msub></semantics></math></inline-formula> of nuclear matter from 24 new analyses of neutron star observables was about <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>≈</mo><mn>57.7</mn><mo>±</mo><mn>19</mn></mrow></semantics></math></inline-formula> MeV at a 68% confidence level, consistent with its fiducial value from surveys of over 50 earlier analyses of both terrestrial and astrophysical data within error bars. (2) The curvature <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mi>sym</mi></msub></semantics></math></inline-formula> of nuclear symmetry energy at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mn>0</mn></msub></semantics></math></inline-formula> from 16 new analyses of neutron star observables was about <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>K</mi><mi>sym</mi></msub><mo>≈</mo><mo>−</mo><mn>107</mn><mo>±</mo><mn>88</mn></mrow></semantics></math></inline-formula> MeV at a 68% confidence level, in very good agreement with the systematics of earlier analyses. (3) The magnitude of nuclear symmetry energy at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><msub><mi>ρ</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>, i.e., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>E</mi><mi>sym</mi></msub><mrow><mo>(</mo><mn>2</mn><msub><mi>ρ</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>≈</mo><mn>51</mn><mo>±</mo><mn>13</mn></mrow></semantics></math></inline-formula> MeV at a 68% confidence level, was extracted from nine new analyses of neutron star observables, consistent with the results from earlier analyses of heavy-ion reactions and the latest predictions of the state-of-the-art nuclear many-body theories. (4) While the available data from canonical neutron stars did not provide tight constraints on nuclear symmetry energy at densities above about <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><msub><mi>ρ</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>, the lower radius boundary <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mrow><mn>2.01</mn></mrow></msub><mo>=</mo><mn>12.2</mn></mrow></semantics></math></inline-formula> km from NICER’s very recent observation of PSR J0740+6620 of mass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.08</mn><mo>±</mo><mn>0.07</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>M</mi><mo>⊙</mo></msub></semantics></math></inline-formula> and radius <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mo>=</mo><mn>12.2</mn><mo>–</mo><mn>16.3</mn></mrow></semantics></math></inline-formula> km at a 68% confidence level set a tight lower limit for nuclear symmetry energy at densities above <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><msub><mi>ρ</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>. (5) Bayesian inferences of nuclear symmetry energy using models encapsulating a first-order hadron–quark phase transition from observables of canonical neutron stars indicated that the phase transition shifted appreciably both <i>L</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mi>sym</mi></msub></semantics></math></inline-formula> to higher values, but with larger uncertainties compared to analyses assuming no such phase transition. (6) The high-density behavior of nuclear symmetry energy significantly affected the minimum frequency necessary to rotationally support GW190814’s secondary component of mass (2.50–2.67) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>M</mi><mo>⊙</mo></msub></semantics></math></inline-formula> as the fastest and most massive pulsar discovered so far. Overall, thanks to the hard work of many people in the astrophysics and nuclear physics community, new data of neutron star observations since the discovery of GW170817 have significantly enriched our knowledge about the symmetry energy of dense neutron-rich nuclear matter.https://www.mdpi.com/2218-1997/7/6/182equation of statesymmetry energyneutron starsBayesian analysisquark–hadron phase transitiontidal deformability