Dynamic Data Reconciliation in a Hot-oil Heat Exchanger for Validating Energy Consumption

Measured data from instruments are usually composed of errors. Data reconciliation is applied to improve the accuracy of measured data to satisfy mass and energy balances of the process. This work is focused on dynamic data reconciliation of a utility heat exchanger using hot oil from a waste heat r...

Full description

Bibliographic Details
Main Authors: P. Singhmaneeskulchai, N. Angsutorn, K. Siemanond
Format: Article
Language:English
Published: AIDIC Servizi S.r.l. 2013-09-01
Series:Chemical Engineering Transactions
Online Access:https://www.cetjournal.it/index.php/cet/article/view/6031
id doaj-76b68c393ddd4712964524789beb23cf
record_format Article
spelling doaj-76b68c393ddd4712964524789beb23cf2021-02-21T21:04:54ZengAIDIC Servizi S.r.l.Chemical Engineering Transactions2283-92162013-09-013510.3303/CET1335082Dynamic Data Reconciliation in a Hot-oil Heat Exchanger for Validating Energy ConsumptionP. SinghmaneeskulchaiN. AngsutornK. SiemanondMeasured data from instruments are usually composed of errors. Data reconciliation is applied to improve the accuracy of measured data to satisfy mass and energy balances of the process. This work is focused on dynamic data reconciliation of a utility heat exchanger using hot oil from a waste heat recovery unit as a hot stream to heat up ethane product as a cold process stream from a natural gas separation plant. The measured data include flow rates, supply and target temperatures of hot oil and cold process streams. The dynamic data reconciliation was done by a combined optimization and constraint model solution strategy by converting the differential equations of the unsteady state equations to the algebraic equations using Euler’s approximation. Adjustment of the hot oil flow rate of the fixed-area utility exchanger leads to a change in the target temperatures of the hot oil and cold process streams, as well as energy consumption. Excel’s solver and commercial optimization software, General Algebraic Modelling System (GAMS), with a weighted least- square objective function are used for performing data reconciliation to validate the measured data and energy consumption. After data reconciliation was completed, estimates of process variables are more accurate and satisfy the process constraints.https://www.cetjournal.it/index.php/cet/article/view/6031
collection DOAJ
language English
format Article
sources DOAJ
author P. Singhmaneeskulchai
N. Angsutorn
K. Siemanond
spellingShingle P. Singhmaneeskulchai
N. Angsutorn
K. Siemanond
Dynamic Data Reconciliation in a Hot-oil Heat Exchanger for Validating Energy Consumption
Chemical Engineering Transactions
author_facet P. Singhmaneeskulchai
N. Angsutorn
K. Siemanond
author_sort P. Singhmaneeskulchai
title Dynamic Data Reconciliation in a Hot-oil Heat Exchanger for Validating Energy Consumption
title_short Dynamic Data Reconciliation in a Hot-oil Heat Exchanger for Validating Energy Consumption
title_full Dynamic Data Reconciliation in a Hot-oil Heat Exchanger for Validating Energy Consumption
title_fullStr Dynamic Data Reconciliation in a Hot-oil Heat Exchanger for Validating Energy Consumption
title_full_unstemmed Dynamic Data Reconciliation in a Hot-oil Heat Exchanger for Validating Energy Consumption
title_sort dynamic data reconciliation in a hot-oil heat exchanger for validating energy consumption
publisher AIDIC Servizi S.r.l.
series Chemical Engineering Transactions
issn 2283-9216
publishDate 2013-09-01
description Measured data from instruments are usually composed of errors. Data reconciliation is applied to improve the accuracy of measured data to satisfy mass and energy balances of the process. This work is focused on dynamic data reconciliation of a utility heat exchanger using hot oil from a waste heat recovery unit as a hot stream to heat up ethane product as a cold process stream from a natural gas separation plant. The measured data include flow rates, supply and target temperatures of hot oil and cold process streams. The dynamic data reconciliation was done by a combined optimization and constraint model solution strategy by converting the differential equations of the unsteady state equations to the algebraic equations using Euler’s approximation. Adjustment of the hot oil flow rate of the fixed-area utility exchanger leads to a change in the target temperatures of the hot oil and cold process streams, as well as energy consumption. Excel’s solver and commercial optimization software, General Algebraic Modelling System (GAMS), with a weighted least- square objective function are used for performing data reconciliation to validate the measured data and energy consumption. After data reconciliation was completed, estimates of process variables are more accurate and satisfy the process constraints.
url https://www.cetjournal.it/index.php/cet/article/view/6031
work_keys_str_mv AT psinghmaneeskulchai dynamicdatareconciliationinahotoilheatexchangerforvalidatingenergyconsumption
AT nangsutorn dynamicdatareconciliationinahotoilheatexchangerforvalidatingenergyconsumption
AT ksiemanond dynamicdatareconciliationinahotoilheatexchangerforvalidatingenergyconsumption
_version_ 1724257366661136384