Probing the fission properties of neutron-rich actinides with the astrophysical r process
We review recent work examining the influence of fission in rapid neutron capture (r-process) nucleosynthesis which can take place in astrophysical environments. We briefly discuss the impact of uncertain fission barriers and fission rates on the population of heavy actinide species. We demonstrate...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2020-01-01
|
Series: | EPJ Web of Conferences |
Online Access: | https://www.epj-conferences.org/articles/epjconf/pdf/2020/18/epjconf_fpy2020_04002.pdf |
Summary: | We review recent work examining the influence of fission in rapid neutron capture (r-process) nucleosynthesis which can take place in astrophysical environments. We briefly discuss the impact of uncertain fission barriers and fission rates on the population of heavy actinide species. We demonstrate the influence of the fission fragment distributions for neutron-rich nuclei and discuss currently available treatments, including recent macroscopic-microscopic calculations. We conclude by comparing our nucleosynthesis results directly with stellar data for metal-poor stars rich in r-process elements to consider whether fission plays a role in the so-called ‘universality’ of r-process abundances observed from star to star. |
---|---|
ISSN: | 2100-014X |