A Theoretical Study of Surface Mode Propagation with a Guiding Layer of GaN/Sapphire Hetero-Structure in Liquid Medium

Gallium Nitride (GaN) is considered as the second most popular semiconductor material in industry after silicon. This is due to its wide applications encompassing Light Emitting Diode (LED) and power electronics. In addition, its piezoelectric properties are fascinating to be explored as electromech...

Full description

Bibliographic Details
Main Authors: M. F. Mohd Razip Wee, Muhammad Musoddiq Jaafar, Mohd Syafiq Faiz, Chang Fu Dee, Burhanuddin Yeop Majlis
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Biosensors
Subjects:
Online Access:https://www.mdpi.com/2079-6374/8/4/124
Description
Summary:Gallium Nitride (GaN) is considered as the second most popular semiconductor material in industry after silicon. This is due to its wide applications encompassing Light Emitting Diode (LED) and power electronics. In addition, its piezoelectric properties are fascinating to be explored as electromechanical material for the development of diverse microelectromechanical systems (MEMS) application. In this article, we conducted a theoretical study concerning surface mode propagation, especially Rayleigh and Sezawa mode in the layered GaN/sapphire structure with the presence of various guiding layers. It is demonstrated that the increase in thickness of guiding layer will decrease the phase velocities of surface mode depending on the material properties of the layer. In addition, the Q-factor value indicating the resonance properties of surface mode appeared to be affected with the presence of fluid domain, particularly in the Rayleigh mode. Meanwhile, the peak for Sezawa mode shows the highest Q factor and is not altered by the presence of fluid. Based on these theoretical results using the finite element method, it could contribute to the development of a GaN-based device to generate surface acoustic wave, especially in Sezawa mode which could be useful in acoustophoresis, lab on-chip and microfluidics applications.
ISSN:2079-6374