Short-Term Wind Speed Forecasting Based on Low Redundancy Feature Selection

Wind speed forecasting is an indispensable part of wind energy assessment and power system scheduling. In the modeling of wind speed forecasting, there are problems of insufficiency of the high input feature dimension, weak pertinence of the model and a lack of consideration about the redundancy bet...

Full description

Bibliographic Details
Main Authors: Nantian Huang, Enkai Xing, Guowei Cai, Zhiyong Yu, Bin Qi, Lin Lin
Format: Article
Language:English
Published: MDPI AG 2018-06-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/11/7/1638
Description
Summary:Wind speed forecasting is an indispensable part of wind energy assessment and power system scheduling. In the modeling of wind speed forecasting, there are problems of insufficiency of the high input feature dimension, weak pertinence of the model and a lack of consideration about the redundancy between features. To address these problems, a short-term wind speed forecast method based on low redundancy feature selection is proposed. Firstly, complementary ensemble empirical mode decomposition (CEEMD) is used to pretreat the wind speed data to reduce the randomness and fluctuation of wind speed data. Secondly, conditional mutual information (CMI) is used to analyze the correlation between the input features on different predicted days and wind speed series. The feature order based on conditional mutual information is used to reduce the redundancy between candidate features and establish subsets with candidate features. After that, according to different candidate feature subsets of different predicted days, the outlier-robust extreme learning machine (ORELM) is used to carry out the forward feature selection and obtain optimal feature subsets for different predicted days. Finally, the optimal prediction model is constructed by using the optimal feature subset and the short-term wind speed forecasting is carried out. The validity and advance of the new method are verified by measured data through comparison experiments.
ISSN:1996-1073