Modeling a Sustainable Salt Tolerant Grass-Livestock Production System under Saline Conditions in the Western San Joaquin Valley of California
Salinity and trace mineral accumulation threaten the sustainability of crop production in many semi-arid parts of the world, including California’s western San Joaquin Valley (WSJV). We used data from a multi-year field-scale trial in Kings County and related container trials to simulate a forage-gr...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2013-09-01
|
Series: | Sustainability |
Subjects: | |
Online Access: | http://www.mdpi.com/2071-1050/5/9/3839 |
id |
doaj-768a5cdadae9425bab21438e15bbce99 |
---|---|
record_format |
Article |
spelling |
doaj-768a5cdadae9425bab21438e15bbce992020-11-24T20:57:04ZengMDPI AGSustainability2071-10502013-09-01593839385710.3390/su5093839Modeling a Sustainable Salt Tolerant Grass-Livestock Production System under Saline Conditions in the Western San Joaquin Valley of CaliforniaStephen R. KaffkaJohn MaasJames D. OsterMáximo F. AlonsoDennis L. CorwinSalinity and trace mineral accumulation threaten the sustainability of crop production in many semi-arid parts of the world, including California’s western San Joaquin Valley (WSJV). We used data from a multi-year field-scale trial in Kings County and related container trials to simulate a forage-grazing system under saline conditions. The model uses rainfall and irrigation water amounts, irrigation water quality, soil, plant, and atmospheric variables to predict Bermuda grass (Cynodon dactylon (L.) Pers.) growth, quality, and use by cattle. Simulations based on field measurements and a related container study indicate that although soil chemical composition is affected by irrigation water quality, irrigation timing and frequency can be used to mitigate salt and trace mineral accumulation. Bermuda grass yields of up to 12 Mg dry matter (DM)·ha−1 were observed at the field site and predicted by the model. Forage yield and quality supports un-supplemented cattle stocking rates of 1.0 to 1.2 animal units (AU)·ha−1. However, a balance must be achieved between stocking rate, desired average daily gain, accumulation of salts in the soil profile, and potential pollution of ground water from drainage and leaching. Using available weather data, crop-specific parameter values and field scale measurements of soil salinity and nitrogen levels, the model can be used by farmers growing forages on saline soils elsewhere, to sustain forage and livestock production under similarly marginal conditions.http://www.mdpi.com/2071-1050/5/9/3839Bermuda grassgrazingirrigationmanagementsalinitysimulation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Stephen R. Kaffka John Maas James D. Oster Máximo F. Alonso Dennis L. Corwin |
spellingShingle |
Stephen R. Kaffka John Maas James D. Oster Máximo F. Alonso Dennis L. Corwin Modeling a Sustainable Salt Tolerant Grass-Livestock Production System under Saline Conditions in the Western San Joaquin Valley of California Sustainability Bermuda grass grazing irrigation management salinity simulation |
author_facet |
Stephen R. Kaffka John Maas James D. Oster Máximo F. Alonso Dennis L. Corwin |
author_sort |
Stephen R. Kaffka |
title |
Modeling a Sustainable Salt Tolerant Grass-Livestock Production System under Saline Conditions in the Western San Joaquin Valley of California |
title_short |
Modeling a Sustainable Salt Tolerant Grass-Livestock Production System under Saline Conditions in the Western San Joaquin Valley of California |
title_full |
Modeling a Sustainable Salt Tolerant Grass-Livestock Production System under Saline Conditions in the Western San Joaquin Valley of California |
title_fullStr |
Modeling a Sustainable Salt Tolerant Grass-Livestock Production System under Saline Conditions in the Western San Joaquin Valley of California |
title_full_unstemmed |
Modeling a Sustainable Salt Tolerant Grass-Livestock Production System under Saline Conditions in the Western San Joaquin Valley of California |
title_sort |
modeling a sustainable salt tolerant grass-livestock production system under saline conditions in the western san joaquin valley of california |
publisher |
MDPI AG |
series |
Sustainability |
issn |
2071-1050 |
publishDate |
2013-09-01 |
description |
Salinity and trace mineral accumulation threaten the sustainability of crop production in many semi-arid parts of the world, including California’s western San Joaquin Valley (WSJV). We used data from a multi-year field-scale trial in Kings County and related container trials to simulate a forage-grazing system under saline conditions. The model uses rainfall and irrigation water amounts, irrigation water quality, soil, plant, and atmospheric variables to predict Bermuda grass (Cynodon dactylon (L.) Pers.) growth, quality, and use by cattle. Simulations based on field measurements and a related container study indicate that although soil chemical composition is affected by irrigation water quality, irrigation timing and frequency can be used to mitigate salt and trace mineral accumulation. Bermuda grass yields of up to 12 Mg dry matter (DM)·ha−1 were observed at the field site and predicted by the model. Forage yield and quality supports un-supplemented cattle stocking rates of 1.0 to 1.2 animal units (AU)·ha−1. However, a balance must be achieved between stocking rate, desired average daily gain, accumulation of salts in the soil profile, and potential pollution of ground water from drainage and leaching. Using available weather data, crop-specific parameter values and field scale measurements of soil salinity and nitrogen levels, the model can be used by farmers growing forages on saline soils elsewhere, to sustain forage and livestock production under similarly marginal conditions. |
topic |
Bermuda grass grazing irrigation management salinity simulation |
url |
http://www.mdpi.com/2071-1050/5/9/3839 |
work_keys_str_mv |
AT stephenrkaffka modelingasustainablesalttolerantgrasslivestockproductionsystemundersalineconditionsinthewesternsanjoaquinvalleyofcalifornia AT johnmaas modelingasustainablesalttolerantgrasslivestockproductionsystemundersalineconditionsinthewesternsanjoaquinvalleyofcalifornia AT jamesdoster modelingasustainablesalttolerantgrasslivestockproductionsystemundersalineconditionsinthewesternsanjoaquinvalleyofcalifornia AT maximofalonso modelingasustainablesalttolerantgrasslivestockproductionsystemundersalineconditionsinthewesternsanjoaquinvalleyofcalifornia AT dennislcorwin modelingasustainablesalttolerantgrasslivestockproductionsystemundersalineconditionsinthewesternsanjoaquinvalleyofcalifornia |
_version_ |
1716788906351919104 |