On the Parity of the Order of Appearance in the Fibonacci Sequence
Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>F</mi><mi>n</mi></msub><mo>)</mo></mrow><mrow><...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/9/16/1928 |
id |
doaj-7681ef9af59b4df392cb0995dc74b8a6 |
---|---|
record_format |
Article |
spelling |
doaj-7681ef9af59b4df392cb0995dc74b8a62021-08-26T14:02:16ZengMDPI AGMathematics2227-73902021-08-0191928192810.3390/math9161928On the Parity of the Order of Appearance in the Fibonacci SequencePavel Trojovský0Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech RepublicLet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>F</mi><mi>n</mi></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></semantics></math></inline-formula> be the Fibonacci sequence. The order of appearance function (in the Fibonacci sequence) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>:</mo><msub><mi mathvariant="double-struck">Z</mi><mrow><mo>≥</mo><mn>1</mn></mrow></msub><mo>→</mo><msub><mi mathvariant="double-struck">Z</mi><mrow><mo>≥</mo><mn>1</mn></mrow></msub></mrow></semantics></math></inline-formula> is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>:</mo><mo>=</mo><mo movablelimits="true" form="prefix">min</mo><mo>{</mo><mi>k</mi><mo>≥</mo><mn>1</mn><mo>:</mo><msub><mi>F</mi><mi>k</mi></msub><mo>≡</mo><mn>0</mn><mspace width="4.44443pt"></mspace><mrow><mo>(</mo><mo form="prefix">mod</mo><mspace width="0.277778em"></mspace><mi>n</mi><mo>)</mo></mrow><mo>}</mo></mrow></semantics></math></inline-formula>. In this paper, among other things, we prove that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula> is an even number for almost all positive integers <i>n</i> (i.e., the set of such <i>n</i> has natural density equal to 1).https://www.mdpi.com/2227-7390/9/16/1928order of appearanceFibonacci numbersparitynatural densityprime numbers |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Pavel Trojovský |
spellingShingle |
Pavel Trojovský On the Parity of the Order of Appearance in the Fibonacci Sequence Mathematics order of appearance Fibonacci numbers parity natural density prime numbers |
author_facet |
Pavel Trojovský |
author_sort |
Pavel Trojovský |
title |
On the Parity of the Order of Appearance in the Fibonacci Sequence |
title_short |
On the Parity of the Order of Appearance in the Fibonacci Sequence |
title_full |
On the Parity of the Order of Appearance in the Fibonacci Sequence |
title_fullStr |
On the Parity of the Order of Appearance in the Fibonacci Sequence |
title_full_unstemmed |
On the Parity of the Order of Appearance in the Fibonacci Sequence |
title_sort |
on the parity of the order of appearance in the fibonacci sequence |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2021-08-01 |
description |
Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>F</mi><mi>n</mi></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></semantics></math></inline-formula> be the Fibonacci sequence. The order of appearance function (in the Fibonacci sequence) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>:</mo><msub><mi mathvariant="double-struck">Z</mi><mrow><mo>≥</mo><mn>1</mn></mrow></msub><mo>→</mo><msub><mi mathvariant="double-struck">Z</mi><mrow><mo>≥</mo><mn>1</mn></mrow></msub></mrow></semantics></math></inline-formula> is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>:</mo><mo>=</mo><mo movablelimits="true" form="prefix">min</mo><mo>{</mo><mi>k</mi><mo>≥</mo><mn>1</mn><mo>:</mo><msub><mi>F</mi><mi>k</mi></msub><mo>≡</mo><mn>0</mn><mspace width="4.44443pt"></mspace><mrow><mo>(</mo><mo form="prefix">mod</mo><mspace width="0.277778em"></mspace><mi>n</mi><mo>)</mo></mrow><mo>}</mo></mrow></semantics></math></inline-formula>. In this paper, among other things, we prove that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula> is an even number for almost all positive integers <i>n</i> (i.e., the set of such <i>n</i> has natural density equal to 1). |
topic |
order of appearance Fibonacci numbers parity natural density prime numbers |
url |
https://www.mdpi.com/2227-7390/9/16/1928 |
work_keys_str_mv |
AT paveltrojovsky ontheparityoftheorderofappearanceinthefibonaccisequence |
_version_ |
1721191700544618496 |