On the Parity of the Order of Appearance in the Fibonacci Sequence

Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>F</mi><mi>n</mi></msub><mo>)</mo></mrow><mrow><...

Full description

Bibliographic Details
Main Author: Pavel Trojovský
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/16/1928
id doaj-7681ef9af59b4df392cb0995dc74b8a6
record_format Article
spelling doaj-7681ef9af59b4df392cb0995dc74b8a62021-08-26T14:02:16ZengMDPI AGMathematics2227-73902021-08-0191928192810.3390/math9161928On the Parity of the Order of Appearance in the Fibonacci SequencePavel Trojovský0Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech RepublicLet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>F</mi><mi>n</mi></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></semantics></math></inline-formula> be the Fibonacci sequence. The order of appearance function (in the Fibonacci sequence) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>:</mo><msub><mi mathvariant="double-struck">Z</mi><mrow><mo>≥</mo><mn>1</mn></mrow></msub><mo>→</mo><msub><mi mathvariant="double-struck">Z</mi><mrow><mo>≥</mo><mn>1</mn></mrow></msub></mrow></semantics></math></inline-formula> is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>:</mo><mo>=</mo><mo movablelimits="true" form="prefix">min</mo><mo>{</mo><mi>k</mi><mo>≥</mo><mn>1</mn><mo>:</mo><msub><mi>F</mi><mi>k</mi></msub><mo>≡</mo><mn>0</mn><mspace width="4.44443pt"></mspace><mrow><mo>(</mo><mo form="prefix">mod</mo><mspace width="0.277778em"></mspace><mi>n</mi><mo>)</mo></mrow><mo>}</mo></mrow></semantics></math></inline-formula>. In this paper, among other things, we prove that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula> is an even number for almost all positive integers <i>n</i> (i.e., the set of such <i>n</i> has natural density equal to 1).https://www.mdpi.com/2227-7390/9/16/1928order of appearanceFibonacci numbersparitynatural densityprime numbers
collection DOAJ
language English
format Article
sources DOAJ
author Pavel Trojovský
spellingShingle Pavel Trojovský
On the Parity of the Order of Appearance in the Fibonacci Sequence
Mathematics
order of appearance
Fibonacci numbers
parity
natural density
prime numbers
author_facet Pavel Trojovský
author_sort Pavel Trojovský
title On the Parity of the Order of Appearance in the Fibonacci Sequence
title_short On the Parity of the Order of Appearance in the Fibonacci Sequence
title_full On the Parity of the Order of Appearance in the Fibonacci Sequence
title_fullStr On the Parity of the Order of Appearance in the Fibonacci Sequence
title_full_unstemmed On the Parity of the Order of Appearance in the Fibonacci Sequence
title_sort on the parity of the order of appearance in the fibonacci sequence
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2021-08-01
description Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>F</mi><mi>n</mi></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></semantics></math></inline-formula> be the Fibonacci sequence. The order of appearance function (in the Fibonacci sequence) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>:</mo><msub><mi mathvariant="double-struck">Z</mi><mrow><mo>≥</mo><mn>1</mn></mrow></msub><mo>→</mo><msub><mi mathvariant="double-struck">Z</mi><mrow><mo>≥</mo><mn>1</mn></mrow></msub></mrow></semantics></math></inline-formula> is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>:</mo><mo>=</mo><mo movablelimits="true" form="prefix">min</mo><mo>{</mo><mi>k</mi><mo>≥</mo><mn>1</mn><mo>:</mo><msub><mi>F</mi><mi>k</mi></msub><mo>≡</mo><mn>0</mn><mspace width="4.44443pt"></mspace><mrow><mo>(</mo><mo form="prefix">mod</mo><mspace width="0.277778em"></mspace><mi>n</mi><mo>)</mo></mrow><mo>}</mo></mrow></semantics></math></inline-formula>. In this paper, among other things, we prove that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula> is an even number for almost all positive integers <i>n</i> (i.e., the set of such <i>n</i> has natural density equal to 1).
topic order of appearance
Fibonacci numbers
parity
natural density
prime numbers
url https://www.mdpi.com/2227-7390/9/16/1928
work_keys_str_mv AT paveltrojovsky ontheparityoftheorderofappearanceinthefibonaccisequence
_version_ 1721191700544618496