SPATIAL AND TEMPORAL COMMUNITY DETECTION OF CAR MOBILITY NETWORK IN METRO MANILA
Transportation Network Companies (TNCs) like Uber utilize GPS and wireless connection for passenger pickup, driver navigation, and passenger drop off. Location-based information from Uber in aggregated form has been made publicly available. They capture instantaneous traffic situation of an area, wh...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-12-01
|
Series: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Online Access: | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W19/101/2019/isprs-archives-XLII-4-W19-101-2019.pdf |
id |
doaj-76818e61efa148c988365511059899be |
---|---|
record_format |
Article |
spelling |
doaj-76818e61efa148c988365511059899be2020-11-24T21:38:56ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342019-12-01XLII-4-W1910110810.5194/isprs-archives-XLII-4-W19-101-2019SPATIAL AND TEMPORAL COMMUNITY DETECTION OF CAR MOBILITY NETWORK IN METRO MANILAB. G. Carcellar III0B. G. Carcellar III1A. C. Blanco2M. Nagai3Department of Geodetic Engineering, College of Engineering, University of the Philippines, Diliman, PhilippinesDepartment of Construction and Environmental Engineering, Graduate School of Science and Technology for Innovation, Yamaguchi University, JapanDepartment of Geodetic Engineering, College of Engineering, University of the Philippines, Diliman, PhilippinesDepartment of Construction and Environmental Engineering, Graduate School of Science and Technology for Innovation, Yamaguchi University, JapanTransportation Network Companies (TNCs) like Uber utilize GPS and wireless connection for passenger pickup, driver navigation, and passenger drop off. Location-based information from Uber in aggregated form has been made publicly available. They capture instantaneous traffic situation of an area, which makes describing spatiotemporal traffic characteristics of the area possible. Such information is valuable, especially in highly urbanized areas like Manila that experience heavy traffic. In this research, a methodology for identifying the underlying city structure and traffic patterns in Metro Manila was developed from the Uber trip information. The trip information was modelled as a complex network and Infomap community detection was utilized to group areas with ease of access. From Uber trip dataset, the data was segregated into different hours-of-day and for each hour-of-day, a directed-weighted temporal network was generated. Hours-of-day with similar traffic characteristics were also grouped together to form hour groups. From the results of the network characterization, hours-of-day were grouped into six hour groups; 00 to 04 hours-of-day in hour group 1, 05 to 07 hours-of-day in group 2, 08 to 12 hours-of-day in group 3, 13 to 15 in group 4, 16 to 19 in group 5, and 20 to 23 in group 6. Major roads as well as river networks were observed to be the major skeleton and boundaries of the generated clusters.https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W19/101/2019/isprs-archives-XLII-4-W19-101-2019.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
B. G. Carcellar III B. G. Carcellar III A. C. Blanco M. Nagai |
spellingShingle |
B. G. Carcellar III B. G. Carcellar III A. C. Blanco M. Nagai SPATIAL AND TEMPORAL COMMUNITY DETECTION OF CAR MOBILITY NETWORK IN METRO MANILA The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
author_facet |
B. G. Carcellar III B. G. Carcellar III A. C. Blanco M. Nagai |
author_sort |
B. G. Carcellar III |
title |
SPATIAL AND TEMPORAL COMMUNITY DETECTION OF CAR MOBILITY NETWORK IN METRO MANILA |
title_short |
SPATIAL AND TEMPORAL COMMUNITY DETECTION OF CAR MOBILITY NETWORK IN METRO MANILA |
title_full |
SPATIAL AND TEMPORAL COMMUNITY DETECTION OF CAR MOBILITY NETWORK IN METRO MANILA |
title_fullStr |
SPATIAL AND TEMPORAL COMMUNITY DETECTION OF CAR MOBILITY NETWORK IN METRO MANILA |
title_full_unstemmed |
SPATIAL AND TEMPORAL COMMUNITY DETECTION OF CAR MOBILITY NETWORK IN METRO MANILA |
title_sort |
spatial and temporal community detection of car mobility network in metro manila |
publisher |
Copernicus Publications |
series |
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
issn |
1682-1750 2194-9034 |
publishDate |
2019-12-01 |
description |
Transportation Network Companies (TNCs) like Uber utilize GPS and wireless connection for passenger pickup, driver navigation, and passenger drop off. Location-based information from Uber in aggregated form has been made publicly available. They capture instantaneous traffic situation of an area, which makes describing spatiotemporal traffic characteristics of the area possible. Such information is valuable, especially in highly urbanized areas like Manila that experience heavy traffic. In this research, a methodology for identifying the underlying city structure and traffic patterns in Metro Manila was developed from the Uber trip information. The trip information was modelled as a complex network and Infomap community detection was utilized to group areas with ease of access. From Uber trip dataset, the data was segregated into different hours-of-day and for each hour-of-day, a directed-weighted temporal network was generated. Hours-of-day with similar traffic characteristics were also grouped together to form hour groups. From the results of the network characterization, hours-of-day were grouped into six hour groups; 00 to 04 hours-of-day in hour group 1, 05 to 07 hours-of-day in group 2, 08 to 12 hours-of-day in group 3, 13 to 15 in group 4, 16 to 19 in group 5, and 20 to 23 in group 6. Major roads as well as river networks were observed to be the major skeleton and boundaries of the generated clusters. |
url |
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W19/101/2019/isprs-archives-XLII-4-W19-101-2019.pdf |
work_keys_str_mv |
AT bgcarcellariii spatialandtemporalcommunitydetectionofcarmobilitynetworkinmetromanila AT bgcarcellariii spatialandtemporalcommunitydetectionofcarmobilitynetworkinmetromanila AT acblanco spatialandtemporalcommunitydetectionofcarmobilitynetworkinmetromanila AT mnagai spatialandtemporalcommunitydetectionofcarmobilitynetworkinmetromanila |
_version_ |
1725933771619827712 |