Direct analogues of Wiman's inequality for analytic functions in the unit disc

Let $f(z)=\sum_{n=0}^{\infty} a_n z^n$ be an analytic function on $\{z:|z|&lt;1\},\ h\in H$ and $\Omega_f(r)= \sum_{n=0}^{\infty} |a_n| r^n$. If<br />$$<br />\beta_{fh}=\liminf\limits_{r\to1}\frac{\ln\ln\Omega_f(r)}{\ln h(r)}=+\infty,<br />$$<br />then Wiman's inequa...

Full description

Bibliographic Details
Main Authors: O. B. Skaskiv, A. O. Kuryliak
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2013-01-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Online Access:http://journals.pu.if.ua/index.php/cmp/article/view/51
id doaj-7679ec3872664ea6afca51788b56bc52
record_format Article
spelling doaj-7679ec3872664ea6afca51788b56bc522020-11-25T00:46:44ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102013-01-012110911810.15330/cmp.2.1.109-11856Direct analogues of Wiman's inequality for analytic functions in the unit discO. B. Skaskiv0A. O. Kuryliak1Ivan Franko National University, 1 Universytetska str., 79000, Lviv, UkraineIvan Franko National University of LvivLet $f(z)=\sum_{n=0}^{\infty} a_n z^n$ be an analytic function on $\{z:|z|&lt;1\},\ h\in H$ and $\Omega_f(r)= \sum_{n=0}^{\infty} |a_n| r^n$. If<br />$$<br />\beta_{fh}=\liminf\limits_{r\to1}\frac{\ln\ln\Omega_f(r)}{\ln h(r)}=+\infty,<br />$$<br />then Wiman's inequality $M_f(r)\leq \mu_f(r) \ln^{1/2+\delta}\mu_f(r)$ is true for all $r\in (r_0, 1)\backslash E(\delta)$, where $h-\mbox{meas}\ E&lt;+\infty.$http://journals.pu.if.ua/index.php/cmp/article/view/51
collection DOAJ
language English
format Article
sources DOAJ
author O. B. Skaskiv
A. O. Kuryliak
spellingShingle O. B. Skaskiv
A. O. Kuryliak
Direct analogues of Wiman's inequality for analytic functions in the unit disc
Karpatsʹkì Matematičnì Publìkacìï
author_facet O. B. Skaskiv
A. O. Kuryliak
author_sort O. B. Skaskiv
title Direct analogues of Wiman's inequality for analytic functions in the unit disc
title_short Direct analogues of Wiman's inequality for analytic functions in the unit disc
title_full Direct analogues of Wiman's inequality for analytic functions in the unit disc
title_fullStr Direct analogues of Wiman's inequality for analytic functions in the unit disc
title_full_unstemmed Direct analogues of Wiman's inequality for analytic functions in the unit disc
title_sort direct analogues of wiman's inequality for analytic functions in the unit disc
publisher Vasyl Stefanyk Precarpathian National University
series Karpatsʹkì Matematičnì Publìkacìï
issn 2075-9827
2313-0210
publishDate 2013-01-01
description Let $f(z)=\sum_{n=0}^{\infty} a_n z^n$ be an analytic function on $\{z:|z|&lt;1\},\ h\in H$ and $\Omega_f(r)= \sum_{n=0}^{\infty} |a_n| r^n$. If<br />$$<br />\beta_{fh}=\liminf\limits_{r\to1}\frac{\ln\ln\Omega_f(r)}{\ln h(r)}=+\infty,<br />$$<br />then Wiman's inequality $M_f(r)\leq \mu_f(r) \ln^{1/2+\delta}\mu_f(r)$ is true for all $r\in (r_0, 1)\backslash E(\delta)$, where $h-\mbox{meas}\ E&lt;+\infty.$
url http://journals.pu.if.ua/index.php/cmp/article/view/51
work_keys_str_mv AT obskaskiv directanaloguesofwimansinequalityforanalyticfunctionsintheunitdisc
AT aokuryliak directanaloguesofwimansinequalityforanalyticfunctionsintheunitdisc
_version_ 1725263428447109120