Fekete-Szegö Type Problems and Their Applications for a Subclass of <i>q</i>-Starlike Functions with Respect to Symmetrical Points

In this article, by using the concept of the quantum (or <i>q</i>-) calculus and a general conic domain <inline-formula> <math display="inline"> <semantics> <msub> <mo>Ω</mo> <mrow> <mi>k</mi> <mo>,</mo> <mi&g...

Full description

Bibliographic Details
Main Authors: Hari Mohan Srivastava, Nazar Khan, Maslina Darus, Shahid Khan, Qazi Zahoor Ahmad, Saqib Hussain
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/5/842
id doaj-7677b315b344470996304fe93f5cfba6
record_format Article
spelling doaj-7677b315b344470996304fe93f5cfba62020-11-25T03:33:37ZengMDPI AGMathematics2227-73902020-05-01884284210.3390/math8050842Fekete-Szegö Type Problems and Their Applications for a Subclass of <i>q</i>-Starlike Functions with Respect to Symmetrical PointsHari Mohan Srivastava0Nazar Khan1Maslina Darus2Shahid Khan3Qazi Zahoor Ahmad4Saqib Hussain5Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, CanadaDepartment of Mathematics Abbottabad University of Science and Technology, Abbottabad 22010, PakistanDepartment of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, MalaysiaDepartment of Mathematics, Riphah International University Islamabad, Islamabad 44000, PakistanDepartment of Mathematics Abbottabad University of Science and Technology, Abbottabad 22010, PakistanDepartment of Mathematics, Comsats University Islamabad, Abbottabad Campus, Abbottabad 22010, PakistanIn this article, by using the concept of the quantum (or <i>q</i>-) calculus and a general conic domain <inline-formula> <math display="inline"> <semantics> <msub> <mo>Ω</mo> <mrow> <mi>k</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> </semantics> </math> </inline-formula>, we study a new subclass of normalized analytic functions with respect to symmetrical points in an open unit disk. We solve the Fekete-Szegö type problems for this newly-defined subclass of analytic functions. We also discuss some applications of the main results by using a <i>q</i>-Bernardi integral operator.https://www.mdpi.com/2227-7390/8/5/842analytic functionsquantum (or <i>q</i>-) calculusconic domain<i>q</i>-derivative operatorHankel determinantToeplitz matrices
collection DOAJ
language English
format Article
sources DOAJ
author Hari Mohan Srivastava
Nazar Khan
Maslina Darus
Shahid Khan
Qazi Zahoor Ahmad
Saqib Hussain
spellingShingle Hari Mohan Srivastava
Nazar Khan
Maslina Darus
Shahid Khan
Qazi Zahoor Ahmad
Saqib Hussain
Fekete-Szegö Type Problems and Their Applications for a Subclass of <i>q</i>-Starlike Functions with Respect to Symmetrical Points
Mathematics
analytic functions
quantum (or <i>q</i>-) calculus
conic domain
<i>q</i>-derivative operator
Hankel determinant
Toeplitz matrices
author_facet Hari Mohan Srivastava
Nazar Khan
Maslina Darus
Shahid Khan
Qazi Zahoor Ahmad
Saqib Hussain
author_sort Hari Mohan Srivastava
title Fekete-Szegö Type Problems and Their Applications for a Subclass of <i>q</i>-Starlike Functions with Respect to Symmetrical Points
title_short Fekete-Szegö Type Problems and Their Applications for a Subclass of <i>q</i>-Starlike Functions with Respect to Symmetrical Points
title_full Fekete-Szegö Type Problems and Their Applications for a Subclass of <i>q</i>-Starlike Functions with Respect to Symmetrical Points
title_fullStr Fekete-Szegö Type Problems and Their Applications for a Subclass of <i>q</i>-Starlike Functions with Respect to Symmetrical Points
title_full_unstemmed Fekete-Szegö Type Problems and Their Applications for a Subclass of <i>q</i>-Starlike Functions with Respect to Symmetrical Points
title_sort fekete-szegö type problems and their applications for a subclass of <i>q</i>-starlike functions with respect to symmetrical points
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2020-05-01
description In this article, by using the concept of the quantum (or <i>q</i>-) calculus and a general conic domain <inline-formula> <math display="inline"> <semantics> <msub> <mo>Ω</mo> <mrow> <mi>k</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> </semantics> </math> </inline-formula>, we study a new subclass of normalized analytic functions with respect to symmetrical points in an open unit disk. We solve the Fekete-Szegö type problems for this newly-defined subclass of analytic functions. We also discuss some applications of the main results by using a <i>q</i>-Bernardi integral operator.
topic analytic functions
quantum (or <i>q</i>-) calculus
conic domain
<i>q</i>-derivative operator
Hankel determinant
Toeplitz matrices
url https://www.mdpi.com/2227-7390/8/5/842
work_keys_str_mv AT harimohansrivastava feketeszegotypeproblemsandtheirapplicationsforasubclassofiqistarlikefunctionswithrespecttosymmetricalpoints
AT nazarkhan feketeszegotypeproblemsandtheirapplicationsforasubclassofiqistarlikefunctionswithrespecttosymmetricalpoints
AT maslinadarus feketeszegotypeproblemsandtheirapplicationsforasubclassofiqistarlikefunctionswithrespecttosymmetricalpoints
AT shahidkhan feketeszegotypeproblemsandtheirapplicationsforasubclassofiqistarlikefunctionswithrespecttosymmetricalpoints
AT qazizahoorahmad feketeszegotypeproblemsandtheirapplicationsforasubclassofiqistarlikefunctionswithrespecttosymmetricalpoints
AT saqibhussain feketeszegotypeproblemsandtheirapplicationsforasubclassofiqistarlikefunctionswithrespecttosymmetricalpoints
_version_ 1724562609789730816