Fekete-Szegö Type Problems and Their Applications for a Subclass of <i>q</i>-Starlike Functions with Respect to Symmetrical Points
In this article, by using the concept of the quantum (or <i>q</i>-) calculus and a general conic domain <inline-formula> <math display="inline"> <semantics> <msub> <mo>Ω</mo> <mrow> <mi>k</mi> <mo>,</mo> <mi&g...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-05-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/5/842 |
id |
doaj-7677b315b344470996304fe93f5cfba6 |
---|---|
record_format |
Article |
spelling |
doaj-7677b315b344470996304fe93f5cfba62020-11-25T03:33:37ZengMDPI AGMathematics2227-73902020-05-01884284210.3390/math8050842Fekete-Szegö Type Problems and Their Applications for a Subclass of <i>q</i>-Starlike Functions with Respect to Symmetrical PointsHari Mohan Srivastava0Nazar Khan1Maslina Darus2Shahid Khan3Qazi Zahoor Ahmad4Saqib Hussain5Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, CanadaDepartment of Mathematics Abbottabad University of Science and Technology, Abbottabad 22010, PakistanDepartment of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, MalaysiaDepartment of Mathematics, Riphah International University Islamabad, Islamabad 44000, PakistanDepartment of Mathematics Abbottabad University of Science and Technology, Abbottabad 22010, PakistanDepartment of Mathematics, Comsats University Islamabad, Abbottabad Campus, Abbottabad 22010, PakistanIn this article, by using the concept of the quantum (or <i>q</i>-) calculus and a general conic domain <inline-formula> <math display="inline"> <semantics> <msub> <mo>Ω</mo> <mrow> <mi>k</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> </semantics> </math> </inline-formula>, we study a new subclass of normalized analytic functions with respect to symmetrical points in an open unit disk. We solve the Fekete-Szegö type problems for this newly-defined subclass of analytic functions. We also discuss some applications of the main results by using a <i>q</i>-Bernardi integral operator.https://www.mdpi.com/2227-7390/8/5/842analytic functionsquantum (or <i>q</i>-) calculusconic domain<i>q</i>-derivative operatorHankel determinantToeplitz matrices |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hari Mohan Srivastava Nazar Khan Maslina Darus Shahid Khan Qazi Zahoor Ahmad Saqib Hussain |
spellingShingle |
Hari Mohan Srivastava Nazar Khan Maslina Darus Shahid Khan Qazi Zahoor Ahmad Saqib Hussain Fekete-Szegö Type Problems and Their Applications for a Subclass of <i>q</i>-Starlike Functions with Respect to Symmetrical Points Mathematics analytic functions quantum (or <i>q</i>-) calculus conic domain <i>q</i>-derivative operator Hankel determinant Toeplitz matrices |
author_facet |
Hari Mohan Srivastava Nazar Khan Maslina Darus Shahid Khan Qazi Zahoor Ahmad Saqib Hussain |
author_sort |
Hari Mohan Srivastava |
title |
Fekete-Szegö Type Problems and Their Applications for a Subclass of <i>q</i>-Starlike Functions with Respect to Symmetrical Points |
title_short |
Fekete-Szegö Type Problems and Their Applications for a Subclass of <i>q</i>-Starlike Functions with Respect to Symmetrical Points |
title_full |
Fekete-Szegö Type Problems and Their Applications for a Subclass of <i>q</i>-Starlike Functions with Respect to Symmetrical Points |
title_fullStr |
Fekete-Szegö Type Problems and Their Applications for a Subclass of <i>q</i>-Starlike Functions with Respect to Symmetrical Points |
title_full_unstemmed |
Fekete-Szegö Type Problems and Their Applications for a Subclass of <i>q</i>-Starlike Functions with Respect to Symmetrical Points |
title_sort |
fekete-szegö type problems and their applications for a subclass of <i>q</i>-starlike functions with respect to symmetrical points |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2020-05-01 |
description |
In this article, by using the concept of the quantum (or <i>q</i>-) calculus and a general conic domain <inline-formula> <math display="inline"> <semantics> <msub> <mo>Ω</mo> <mrow> <mi>k</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> </semantics> </math> </inline-formula>, we study a new subclass of normalized analytic functions with respect to symmetrical points in an open unit disk. We solve the Fekete-Szegö type problems for this newly-defined subclass of analytic functions. We also discuss some applications of the main results by using a <i>q</i>-Bernardi integral operator. |
topic |
analytic functions quantum (or <i>q</i>-) calculus conic domain <i>q</i>-derivative operator Hankel determinant Toeplitz matrices |
url |
https://www.mdpi.com/2227-7390/8/5/842 |
work_keys_str_mv |
AT harimohansrivastava feketeszegotypeproblemsandtheirapplicationsforasubclassofiqistarlikefunctionswithrespecttosymmetricalpoints AT nazarkhan feketeszegotypeproblemsandtheirapplicationsforasubclassofiqistarlikefunctionswithrespecttosymmetricalpoints AT maslinadarus feketeszegotypeproblemsandtheirapplicationsforasubclassofiqistarlikefunctionswithrespecttosymmetricalpoints AT shahidkhan feketeszegotypeproblemsandtheirapplicationsforasubclassofiqistarlikefunctionswithrespecttosymmetricalpoints AT qazizahoorahmad feketeszegotypeproblemsandtheirapplicationsforasubclassofiqistarlikefunctionswithrespecttosymmetricalpoints AT saqibhussain feketeszegotypeproblemsandtheirapplicationsforasubclassofiqistarlikefunctionswithrespecttosymmetricalpoints |
_version_ |
1724562609789730816 |